1,983 research outputs found

    Long-term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology

    Get PDF
    Lakes are active processors and collectors of carbon (C) and thus recognized as quantitatively important within the terrestrial C cycle. Better integration of palaeolimnology (lake sediment core analyses) with limnological C budgeting approaches has the potential to enhance understanding of lacustrine C processing and sequestration. Palaeolimnology simultaneously assimilates materials from across lake habitats, terrestrial watersheds, and airsheds to provide a uniquely broad overview of the terrestrial-atmospheric-aquatic linkages across different spatial scales. The examination of past changes over decadal–millennial timescales via palaeolimnology can inform understanding and prediction of future changes in C cycling. With a particular, but not exclusive, focus on northern latitudes we examine the methodological approaches of palaeolimnology, focusing on how relatively standard and well-tested techniques might be applied to address questions of relevance to the C cycle. We consider how palaeolimnology, limnology, and sedimentation studies might be linked to provide more quantitative and holistic estimates of lake C cycling and budgets. Finally, we use palaeolimnological examples to consider how changes such as terrestrial vegetation shifts, permafrost thaw, the formation of new lakes and reservoirs, hydrological modification of inorganic C processing, land use change, soil erosion and disruption to global nitrogen and phosphorus cycles might influence lake C cycling

    The use of diatom records to establish reference conditions for UK lakes subject to eutrophication

    Get PDF
    A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to similar to 1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically 3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of similar to 30 mu g L-1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with > 50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline

    Using lake sediments to assess the long-term impacts of anthropogenic activity in tropical river deltas

    Get PDF
    Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due to anthropogenic activity and climatic change. Baseline data to inform sustainable management options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions from lake or wetland deposits) can provide crucial long-term perspectives needed to identify drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource managers using three current issues facing tropical delta regions: hydrology and sediment supply, salinisation and nutrient pollution. The unique ability of palaeolimnological methods to untangle multiple stressors is also discussed. We demonstrate how palaeolimnology has been used to understand each of these issues, in other aquatic environments, to be incorporated into policy. Palaeolimnology is a key tool to understanding how anthropogenic influences interact with other environmental stressors, providing policymakers and resource managers with a ‘big picture’ view and possible holistic solutions that can be implemented

    Long-term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology

    Get PDF
    Lakes are active processors and collectors of carbon (C) and thus recognized as quantitatively important within the terrestrial C cycle. Better integration of palaeolimnology (lake sediment core analyses) with limnological or modelling approaches has the potential to enhance understanding of lacustrine C processing and sequestration. Palaeolimnology simultaneously assimilates materials from across lake habitats, terrestrial watersheds and airsheds to provide a uniquely broad overview of the terrestrial-atmospheric-aquatic linkages across spatial scales. The examination of past changes over decadal-millenial timescales via palaeolimnology can inform understanding and prediction of future changes in C cycling. With a particular, but not exclusive, focus on northern latitudes we examine the methodological approaches of palaeolimnology, focusing on how relatively standard and well tested techniques might be applied to address questions of relevance to the C cycle. We consider how palaeolimnology, limnology and sedimentation studies might be linked to provide more quantitative and holistic estimates lake C cycling. Finally, we use palaeolimnological examples to consider how changes such as terrestrial vegetation cover, permafrost thaw, the formation of new lakes and reservoirs, hydrological modification of inorganic C processing, land use change, soil erosion and disruption to global nitrogen and phosphorus cycles might influence lake C cycling

    Evidence of late Quaternary environmental change in a continental east Antarctic lake from lacustrine sedimentary pigment distributions

    Get PDF
    A sediment core from Progress Lake, one of the oldest lacustrine sequences in East Antarctica, contains distinct zones dating from a previous interglacial (most likely Marine Isotope Stage 5e, c. 125-115 kyr BP) and the present interglacial (Marine Isotope Stage 1), separated by a transition zone representing when the lake became sub-glacial. Profiles of fossil pigments, determined using high performance liquid chromatography and liquid chromatography-tandem mass spectrometry, show distinct differences in the photoautotrophic community during these two interglacial periods. The first was dominated by algae and purple phototrophic bacteria, with periods of photic zone euxinia indicated by pigments from anoxygenic phototrophic bacteria. Specific chlorophyll a derivatives reveal periods when grazing pressure impacted significantly on the phytoplankton community. The virtual absence of pigments in the transition zone reflects severe restriction of photoautotrophic activity, consistent with the take having become sub-glacial. Retreat of snow and ice in the late Holocene (3345 C-14 yr Bp) allowed establishment of a less diverse primary producer community, restricted to algae and cyanobacteria. Grazers were severely restricted and oxidative transformation was more important than during the previous interglacial. The pigment data provide a unique and detailed insight in to the evolution of the lake ecology over an interglacial-glacial-interglacial transition and strong evidence that the Marine Isotope Stage 5e interglacial in this region of coastal East Antarctica was several degrees warmer than at present

    The role of Palaeolimnology in implementing the water framework directive in Ireland

    Get PDF
    The EU Water Framework Directive has created research opportunities and challenges for water-quality managers and palaeolimnologists alike. Opportunities have arisen through increased attention to water-quality issues, and these in turn have led to enhanced funding for palaeolimnological research. Scientific challenges include identifying aquatic-system pressures, assessing risks, defi ning non-impacted reference conditions and developing new indicator and classifi cation systems. These challenges have provided the aquatic science research communities with a range of highly relevant and urgent research questions. Addressing these questions requires a collaborative, systematic, whole-catchment approach that, in addition to palaeolimnologists, involves modellers and scientists from other disciplines, water-quality managers, policy-makers and the general public.Ye

    Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential for reconstructing past environmental changes

    Get PDF
    This study is the first published survey of diatom-environment relationships Oil sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes

    A Bayesian palaeoenvironmental transfer function model for acidified lakes

    Get PDF
    A Bayesian approach to palaeoecological environmental reconstruction deriving from the unimodal responses generally exhibited by organisms to an environmental gradient is described. The approach uses Bayesian model selection to calculate a collection of probability-weighted, species-specific response curves (SRCs) for each taxon within a training set, with an explicit treatment for zero abundances. These SRCs are used to reconstruct the environmental variable from sub-fossilised assemblages. The approach enables a substantial increase in computational efficiency (several orders of magnitude) over existing Bayesian methodologies. The model is developed from the Surface Water Acidification Programme (SWAP) training set and is demonstrated to exhibit comparable predictive power to existing Weighted Averaging and Maximum Likelihood methodologies, though with improvements in bias; the additional explanatory power of the Bayesian approach lies in an explicit calculation of uncertainty for each individual reconstruction. The model is applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, including a reconstruction of recent recovery derived from sediment trap data.The Bayesian reconstructions display similar trends to conventional (Weighted Averaging Partial Least Squares) reconstructions but provide a better reconstruction of extreme pH and are more sensitive to small changes in diatom assemblages. The validity of the posteriors as an apparently meaningful representation of assemblage-specific uncertainty and the high computational efficiency of the approach open up the possibility of highly constrained multiproxy reconstructions

    Palaeolimnological analogues in defining target assemblages for the recovery of acidified surface waters: a desk study

    Get PDF
    1) Palaeolimnological techniques have been widely employed to study lake acidification. This approach has been central in testing the cause-effect relationship between acid deposition and lake acidification, and in assessing the magnitude and extent of surface water acidification across the UK. 2) Most of these palaeolimnological applications have been based on diatom analysis, and the use of diatom-pH transfer functions to make reconstructions of hydrochemical change in upland lakes associated with acidification. . 3) Following the signing of the Second Sulphur Protocol, attention is now focusing on emissions reductions and the reversibility of surface waters acidification. There is a clear need for criteria against which to evaluate the recovery process. 4) In order to evaluate future recovery, Flower et al. (1997) have proposed a palaeolimnological technique for defining targets for the recovery of acidified surface waters. This is based on the technique of analogue matching of lake sediment diatom assemblages. Multivariate statistical methods are used to identify modern analogues for the pre-acidification diatom assemblages of acidified lakes. The chemical and biological status of modern analogue lakes can then potentially provide recovery targets for acidified systems. 5) This approach has been successfully applied to several acidified lakes, and modern analogue systems defined for the pre-impact (pre-acidification) status of these impacted sites. An advantage of the approach is that it can provide recovery targets for both chemical and biological status of acidified lakes. 6) Modern analogue matching as currently applied makes several key assumptions: a) that analogue matches based on a single biological group (diatoms) effectively represent the hydrochemical and biological variation of low alkalinity systems; b) that the modern data set used to identify modem analogues contains the range of hydrochemical conditions represented by the fossil assemblages; c) that a suitable stable 'baseline' (pre-impact) status can be defined. 7) Prior to more comprehensive application of the modem analogue approach to acidified lakes in Britain, these assumptions require evaluation. Three studies are proposed: a) Extension of the current modem lake dataset used for analogue matching by the inclusion of minimally impacted low alkalinity sites from northern Scotland. b) Development of the current technique by including two more fossil groups (chironomids and cladocera) in the modern surface sediment dataset used in the matching procedure. This will allow the assumption that diatoms represent wider ecosystem variation to be tested, and should result in more robust analogue matches. c) A study of hydrochemical and biological variation in the pre-acidification conditions of acidified lakes through high-resolution palaeolirnnological study of selected Acid Waters Monitoring Network lakes. This will allow the stability of baseline (preacidification) conditions to be evaluated
    • …
    corecore