247 research outputs found

    Domination in Functigraphs

    Get PDF
    Let G1G_1 and G2G_2 be disjoint copies of a graph GG, and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvuV(G1),vV(G2),v=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2), v=f(u)\}. A functigraph is a generalization of a \emph{permutation graph} (also known as a \emph{generalized prism}) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G)\gamma(G) denote the domination number of GG. It is readily seen that γ(G)γ(C(G,f))2γ(G)\gamma(G) \le \gamma(C(G,f)) \le 2 \gamma(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.Comment: 18 pages, 8 figure

    Paired and induced-paired domination in (E,net)-free graphs

    Get PDF
    A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by attaching a pendant vertex to each vertex of the path on three vertices) as induced subgraphs. This graph class is a natural generalization of (claw,net)-free graphs, which are intensively studied with respect to their nice properties concerning domination and hamiltonicity. We show that any connected (E,net)-free graph has a paired-dominating set that, roughly, contains at most half of the vertices of the graph. This bound is a significant improvement to the known general bounds. Further, we show that any (E,net, C_5 )-free graph has an induced paired-dominating set, that is a paired-dominating set that forms an induced matching, and that such set can be chosen to be a minimum paired-dominating sets. We use these results to obtain a new characterization of (E,net, C_5 )-free graphs in terms of the hereditary existence of induced paired-dominating sets. Finally, we show that the induced matching formed by an induced paired-dominating set in a (E,net, C_5 )-free graph can be chosen to have at most two times the size of the smallest maximal induced matching possible

    Paired and induced-paired domination in (E,net)-free graphs

    Get PDF
    A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by attaching a pendant vertex to each vertex of the path on three vertices) as induced subgraphs. This graph class is a natural generalization of (claw,net)-free graphs, which are intensively studied with respect to their nice properties concerning domination and hamiltonicity. We show that any connected (E,net)-free graph has a paired-dominating set that, roughly, contains at most half of the vertices of the graph. This bound is a significant improvement to the known general bounds. Further, we show that any (E,net, C_5 )-free graph has an induced paired-dominating set, that is a paired-dominating set that forms an induced matching, and that such set can be chosen to be a minimum paired-dominating sets. We use these results to obtain a new characterization of (E,net, C_5 )-free graphs in terms of the hereditary existence of induced paired-dominating sets. Finally, we show that the induced matching formed by an induced paired-dominating set in a (E,net, C_5 )-free graph can be chosen to have at most two times the size of the smallest maximal induced matching possible

    Distance 2-domination in prisms of graphs

    Get PDF
    A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ¿ ( V ( G ) - D ) and D is at most two. Let ¿ 2 ( G ) denote the size of a smallest distance 2 -dominating set of G . For any permutation p of the vertex set of G , the prism of G with respect to p is the graph pG obtained from G and a copy G ' of G by joining u ¿ V ( G ) with v ' ¿ V ( G ' ) if and only if v ' = p ( u ) . If ¿ 2 ( pG ) = ¿ 2 ( G ) for any permutation p of V ( G ) , then G is called a universal ¿ 2 - fixer. In this work we characterize the cycles and paths that are universal ¿ 2 -fixers.Peer ReviewedPostprint (author's final draft

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    A Predictive Model for Secondary RNA Structure Using Graph Theory and a Neural Network.

    Get PDF
    In this work we use a graph-theoretic representation of secondary RNA structure found in the database RAG: RNA-As-Graphs. We model the bonding of two RNA secondary structures to form a larger structure with a graph operation called merge. The resulting data from each tree merge operation is summarized and represented by a vector. We use these vectors as input values for a neural network and train the network to recognize a tree as RNA-like or not based on the merge data vector. The network correctly assigned a high probability of RNA-likeness to trees identified as RNA-like in the RAG database, and a low probability of RNA-likeness to those classified as not RNA-like in the RAG database. We then used the neural network to predict the RNA-likeness of all the trees of order 9. The use of a graph operation to theoretically describe the bonding of secondary RNA is novel
    corecore