20,945 research outputs found

    Packing Plane Spanning Trees and Paths in Complete Geometric Graphs

    Get PDF
    We consider the following question: How many edge-disjoint plane spanning trees are contained in a complete geometric graph GKnGK_n on any set SS of nn points in general position in the plane? We show that this number is in Ω(n)\Omega(\sqrt{n}). Further, we consider variants of this problem by bounding the diameter and the degree of the trees (in particular considering spanning paths).Comment: This work was presented at the 26th Canadian Conference on Computational Geometry (CCCG 2014), Halifax, Nova Scotia, Canada, 2014. The journal version appeared in Information Processing Letters, 124 (2017), 35--4

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an ss'-tt' path PP' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path PEP\subseteq E and a spanning tree TET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Geodesic packing in graphs

    Full text link
    Given a graph GG, a geodesic packing in GG is a set of vertex-disjoint maximal geodesics, and the geodesic packing number of GG, {\gpack}(G), is the maximum cardinality of a geodesic packing in GG. It is proved that the decision version of the geodesic packing number is NP-complete. We also consider the geodesic transversal number, >(G){\gt}(G), which is the minimum cardinality of a set of vertices that hit all maximal geodesics in GG. While \gt(G)\ge \gpack(G) in every graph GG, the quotient gt(G)/gpack(G){\rm gt}(G)/{\rm gpack}(G) is investigated. By using the rook's graph, it is proved that there does not exist a constant C<3C < 3 such that gt(G)gpack(G)C\frac{{\rm gt}(G)}{{\rm gpack}(G)}\le C would hold for all graphs GG. If TT is a tree, then it is proved that gpack(T)=gt(T){\rm gpack}(T) = {\rm gt}(T), and a linear algorithm for determining gpack(T){\rm gpack}(T) is derived. The geodesic packing number is also determined for the strong product of paths

    Packing 3-vertex paths in claw-free graphs and related topics

    Get PDF
    An L-factor of a graph G is a spanning subgraph of G whose every component is a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the domination number of G. A claw is a graph with four vertices and three edges incident to the same vertex. A graph is claw-free if it has no induced subgraph isomorphic to a claw. Our results include the following. Let G be a 3-connected claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in G. Then (a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2) if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G - {x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or 4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E is a set of three edges in G, then G - E has an L-factor if and only if the subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1 mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G, (a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3. We explore the relations between packing problems of a graph and its line graph to obtain some results on different types of packings. We also discuss relations between L-packing and domination problems as well as between induced L-packings and the Hadwiger conjecture. Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page

    Some NP-complete edge packing and partitioning problems in planar graphs

    Full text link
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bern\'ath and Kir\'aly proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.Comment: 6 pages, 2 figure

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every pnα1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries

    Full text link
    The stochastic matching problem deals with finding a maximum matching in a graph whose edges are unknown but can be accessed via queries. This is a special case of stochastic kk-set packing, where the problem is to find a maximum packing of sets, each of which exists with some probability. In this paper, we provide edge and set query algorithms for these two problems, respectively, that provably achieve some fraction of the omniscient optimal solution. Our main theoretical result for the stochastic matching (i.e., 22-set packing) problem is the design of an \emph{adaptive} algorithm that queries only a constant number of edges per vertex and achieves a (1ϵ)(1-\epsilon) fraction of the omniscient optimal solution, for an arbitrarily small ϵ>0\epsilon>0. Moreover, this adaptive algorithm performs the queries in only a constant number of rounds. We complement this result with a \emph{non-adaptive} (i.e., one round of queries) algorithm that achieves a (0.5ϵ)(0.5 - \epsilon) fraction of the omniscient optimum. We also extend both our results to stochastic kk-set packing by designing an adaptive algorithm that achieves a (2kϵ)(\frac{2}{k} - \epsilon) fraction of the omniscient optimal solution, again with only O(1)O(1) queries per element. This guarantee is close to the best known polynomial-time approximation ratio of 3k+1ϵ\frac{3}{k+1} -\epsilon for the \emph{deterministic} kk-set packing problem [Furer and Yu, 2013] We empirically explore the application of (adaptations of) these algorithms to the kidney exchange problem, where patients with end-stage renal failure swap willing but incompatible donors. We show on both generated data and on real data from the first 169 match runs of the UNOS nationwide kidney exchange that even a very small number of non-adaptive edge queries per vertex results in large gains in expected successful matches

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation
    corecore