107 research outputs found

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric

    Decompositions of complete uniform hypergraphs into Hamilton Berge cycles

    Full text link
    In 1973 Bermond, Germa, Heydemann and Sotteau conjectured that if nn divides (nk)\binom{n}{k}, then the complete kk-uniform hypergraph on nn vertices has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of an alternating sequence v1,e1,v2,…,vn,env_1,e_1,v_2,\dots,v_n,e_n of distinct vertices viv_i and distinct edges eie_i so that each eie_i contains viv_i and vi+1v_{i+1}. So the divisibility condition is clearly necessary. In this note, we prove that the conjecture holds whenever k≥4k \ge 4 and n≥30n \ge 30. Our argument is based on the Kruskal-Katona theorem. The case when k=3k=3 was already solved by Verrall, building on results of Bermond

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1−o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every p≥nα−1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Hamilton cycles in quasirandom hypergraphs

    Get PDF
    We show that, for a natural notion of quasirandomness in kk-uniform hypergraphs, any quasirandom kk-uniform hypergraph on nn vertices with constant edge density and minimum vertex degree Ω(nk−1)\Omega(n^{k-1}) contains a loose Hamilton cycle. We also give a construction to show that a kk-uniform hypergraph satisfying these conditions need not contain a Hamilton ℓ\ell-cycle if k−ℓk-\ell divides kk. The remaining values of ℓ\ell form an interesting open question.Comment: 18 pages. Accepted for publication in Random Structures & Algorithm
    • …
    corecore