Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C
\subset H is a collection of N edges for which there is an ordering of the
vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i,
v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop
new techniques which enable us to prove that under certain natural
pseudo-random conditions, almost all edges of H can be covered by edge-disjoint
tight Hamilton cycles, for N divisible by 4. Consequently, we derive the
corollary that random 3-uniform hypergraphs can be almost completely packed
with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small.
Along the way, we develop a similar result for packing Hamilton cycles in
pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur