6,971 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Packing Chromatic Number of Distance Graphs

    Get PDF
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that vertices of GG can be partitioned into disjoint classes X1,...,XkX_1, ..., X_k where vertices in XiX_i have pairwise distance greater than ii. We study the packing chromatic number of infinite distance graphs G(Z,D)G(Z, D), i.e. graphs with the set ZZ of integers as vertex set and in which two distinct vertices i,jZi, j \in Z are adjacent if and only if ijD|i - j| \in D. In this paper we focus on distance graphs with D={1,t}D = \{1, t\}. We improve some results of Togni who initiated the study. It is shown that χρ(G(Z,D))35\chi_{\rho}(G(Z, D)) \leq 35 for sufficiently large odd tt and χρ(G(Z,D))56\chi_{\rho}(G(Z, D)) \leq 56 for sufficiently large even tt. We also give a lower bound 12 for t9t \geq 9 and tighten several gaps for χρ(G(Z,D))\chi_{\rho}(G(Z, D)) with small tt.Comment: 13 pages, 3 figure

    Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming

    Full text link
    Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications including decoding error correcting codes and solving constraint satisfaction and inference problems. BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This work deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering LPs. We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding linear programming (LP) relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the min-sum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudo-polynomial time. Our results unify and extend recent results for the maximum weight matching problem by [Sanghavi et al.,'2011] and [Bayati et al., 2011] and for the maximum weight independent set problem [Sanghavi et al.'2009]

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even
    corecore