3,163 research outputs found

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    Arc-Disjoint Paths and Trees in 2-Regular Digraphs

    Full text link
    An out-(in-)branching B_s^+ (B_s^-) rooted at s in a digraph D is a connected spanning subdigraph of D in which every vertex x != s has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. We settle the complexity of the following two problems: 1) Given a 2-regular digraph DD, decide if it contains two arc-disjoint branchings B^+_u, B^-_v. 2) Given a 2-regular digraph D, decide if it contains an out-branching B^+_u such that D remains connected after removing the arcs of B^+_u. Both problems are NP-complete for general digraphs. We prove that the first problem remains NP-complete for 2-regular digraphs, whereas the second problem turns out to be polynomial when we do not prescribe the root in advance. We also prove that, for 2-regular digraphs, the latter problem is in fact equivalent to deciding if DD contains two arc-disjoint out-branchings. We generalize this result to k-regular digraphs where we want to find a number of pairwise arc-disjoint spanning trees and out-branchings such that there are k in total, again without prescribing any roots.Comment: 9 pages, 7 figure

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces

    Get PDF
    We study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is strongly NP-complete even if the pieces are all polyominos. On the positive side, we show that the problem can be solved in polynomial time if the number of pieces is a fixed constant
    • …
    corecore