16 research outputs found

    Packing and covering immersion models of planar subcubic graphs

    Get PDF
    A graph HH is an immersion of a graph GG if HH can be obtained by some sugraph GG after lifting incident edges. We prove that there is a polynomial function f:N×NNf:\Bbb{N}\times\Bbb{N}\rightarrow\Bbb{N}, such that if HH is a connected planar subcubic graph on h>0h>0 edges, GG is a graph, and kk is a non-negative integer, then either GG contains kk vertex/edge-disjoint subgraphs, each containing HH as an immersion, or GG contains a set FF of f(k,h)f(k,h) vertices/edges such that GFG\setminus F does not contain HH as an immersion

    Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

    Get PDF
    Suppose F is a finite family of graphs. We consider the following meta-problem, called F-Immersion Deletion: given a graph G and an integer k, decide whether the deletion of at most k edges of G can result in a graph that does not contain any graph from F as an immersion. This problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS 2012], where one deletes vertices in order to remove all minor models of graphs from F. We prove that whenever all graphs from F are connected and at least one graph of F is planar and subcubic, then the F-Immersion Deletion problem admits: - a constant-factor approximation algorithm running in time O(m^3 n^3 log m) - a linear kernel that can be computed in time O(m^4 n^3 log m) and - a O(2^{O(k)} + m^4 n^3 log m)-time fixed-parameter algorithm, where n,m count the vertices and edges of the input graph. Our findings mirror those of Fomin et al. [FOCS 2012], who obtained similar results for F-Minor Deletion, under the assumption that at least one graph from F is planar. An important difference is that we are able to obtain a linear kernel for F-Immersion Deletion, while the exponent of the kernel of Fomin et al. depends heavily on the family F. In fact, this dependence is unavoidable under plausible complexity assumptions, as proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization complexity of F-Immersion Deletion is quite different than that of F-Minor Deletion

    Tree-Partitions with Small Bounded Degree Trees

    Full text link
    A "tree-partition" of a graph GG is a partition of V(G)V(G) such that identifying the vertices in each part gives a tree. It is known that every graph with treewidth kk and maximum degree Δ\Delta has a tree-partition with parts of size O(kΔ)O(k\Delta). We prove the same result with the extra property that the underlying tree has maximum degree O(Δ)O(\Delta) and O(V(G)/k)O(|V(G)|/k) vertices

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts

    Product structure of graph classes with strongly sublinear separators

    Full text link
    We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class G\mathcal{G} admits O(n1ϵ)O(n^{1-\epsilon}) separators, then for any fixed δ(0,ϵ)\delta\in(0,\epsilon) every nn-vertex graph in G\mathcal{G} is a subgraph of the strong product of a graph HH with bounded tree-depth and a complete graph of size O(n1ϵ+δ)O(n^{1-\epsilon+\delta}). This result holds with δ=0\delta=0 if we allow HH to have tree-depth O(loglogn)O(\log\log n). Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on δ\delta in our results and the above td(H)O(loglogn)\text{td}(H)\in O(\log\log n) bound are both best possible. We prove that nn-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth tt and a complete graph of size O(n1/t)O(n^{1/t}), which is best possible. Finally, we investigate the conjecture that for any hereditary graph class G\mathcal{G} that admits O(n1ϵ)O(n^{1-\epsilon}) separators, every nn-vertex graph in G\mathcal{G} is a subgraph of the strong product of a graph HH with bounded tree-width and a complete graph of size O(n1ϵ)O(n^{1-\epsilon}). We prove this for various classes G\mathcal{G} of interest.Comment: v2: added bad news subsection; v3: removed section "Polynomial Expansion Classes" which had an error, added section "Lower Bounds", and added a new author; v4: minor revisions and corrections

    Product structure of graph classes with bounded treewidth

    Full text link
    We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the "underlying treewidth" of a graph class G\mathcal{G} to be the minimum non-negative integer cc such that, for some function ff, for every graph GG{G \in \mathcal{G}} there is a graph HH with tw(H)c{\text{tw}(H) \leq c} such that GG is isomorphic to a subgraph of HKf(tw(G)){H \boxtimes K_{f(\text{tw}(G))}}. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth 3; the class of Ks,tK_{s,t}-minor-free graphs has underlying treewidth ss (for tmax{s,3}{t \geq \max\{s,3\}}); and the class of KtK_t-minor-free graphs has underlying treewidth t2{t-2}. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no HH subgraph has bounded underlying treewidth if and only if every component of HH is a subdivided star, and that the class of graphs with no induced HH subgraph has bounded underlying treewidth if and only if every component of HH is a star

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore