15 research outputs found

    Displaying blocking pairs in signed graphs

    Get PDF
    A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor

    Clean clutters and dyadic fractional packings

    Get PDF
    A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value two. This result is best possible for there exist clean clutters with a covering number of three and no dyadic fractional packing of value three. Examples of clean clutters include ideal clutters, binary clutters, and clutters without an intersecting minor. Our proof is constructive and leads naturally to an albeit exponential algorithm. We improve the running time to quasi-polynomial in the rank of the input, and to polynomial in the binary cas

    Decomposition, approximation, and coloring of odd-minor-free graphs

    Get PDF
    We prove two structural decomposition theorems about graphs excluding a fixed odd minor H, and show how these theorems can be used to obtain approximation algorithms for several algorithmic problems in such graphs. Our decomposition results provide new structural insights into odd-H-minor-free graphs, on the one hand generalizing the central structural result from Graph Minor Theory, and on the other hand providing an algorithmic decomposition into two bounded-treewidth graphs, generalizing a similar result for minors. As one example of how these structural results conquer difficult problems, we obtain a polynomial-time 2-approximation for vertex coloring in odd-H-minor-free graphs, improving on the previous O(jV (H)j)-approximation for such graphs and generalizing the previous 2-approximation for H-minor-free graphs. The class of odd-H-minor-free graphs is a vast generalization of the well-studied H-minor-free graph families and includes, for example, all bipartite graphs plus a bounded number of apices. Odd-H-minor-free graphs are particularly interesting from a structural graph theory perspective because they break away from the sparsity of H- minor-free graphs, permitting a quadratic number of edges

    Packing circuits in matroids

    Get PDF
    The purpose of this paper is to characterize all matroids M that satisfy the following minimax relation: for any nonnegative integral weight function w defined on E(M), Maximum { k: M has k circuits ,(repetition, allowed) such that each element e of M is used at most 2w(e) times by these circuits = Minimum { ∑x ∈ X w(x): X is a collection of elements (repetition allowed) of M such that every circuit in M meets X at least twice}. Our characterization contains a complete solution to a research problem on 2-edge-connected subgraph polyhedra posed by Cornuéjols, Fonlupt, and Naddef in 1985, which was independently solved by Vandenbussche and Nemhauser in Vandenbussche and Nemhauser (J. Comb. Optim. 9:357-379, 2005). © 2008 Springer-Verlag.preprin

    Ranking tournaments with no errors II: Minimax relation

    Get PDF
    A tournament T=(V,A) is called cycle Mengerian (CM) if it satisfies the minimax relation on packing and covering cycles, for every nonnegative integral weight function defined on A. The purpose of this series of two papers is to show that a tournament is CM iff it contains none of four Möbius ladders as a subgraph; such a tournament is referred to as Möbius-free. In the first paper we have given a structural description of all Möbius-free tournaments, and have proved that every CM tournament is Möbius-free. In this second paper we establish the converse by using our structural theorems and linear programming approach

    Ranking tournaments with no errors I: Structural description

    Get PDF
    In this series of two papers we examine the classical problem of ranking a set of players on the basis of a set of pairwise comparisons arising from a sports tournament, with the objective of minimizing the total number of upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked player. This problem can be rephrased as the so-called minimum feedback arc set problem on tournaments, which arises in a rich variety of applications and has been a subject of extensive research. In this series we study this NP-hard problem using structure-driven and linear programming approaches. Let T=(V,A) be a tournament with a nonnegative integral weight w(e) on each arc e. A subset F of arcs is called a feedback arc set if T\F contains no cycles (directed). A collection C of cycles (with repetition allowed) is called a cycle packing if each arc e is used at most w(e) times by members of C. We call T cycle Mengerian (CM) if, for every nonnegative integral function w defined on A, the minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing. The purpose of these two papers is to show that a tournament is CM iff it contains none of four Möbius ladders as a subgraph; such a tournament is referred to as Möbius-free. In this first paper we present a structural description of all Möbius-free tournaments, which relies heavily on a chain theorem concerning internally 2-strong tournaments

    Packing odd TT-joins with at most two terminals

    Get PDF
    Take a graph GG, an edge subset Σ⊆E(G)\Sigma\subseteq E(G), and a set of terminals T⊆V(G)T\subseteq V(G) where ∣T∣|T| is even. The triple (G,Σ,T)(G,\Sigma,T) is called a signed graft. A TT-join is odd if it contains an odd number of edges from Σ\Sigma. Let ν\nu be the maximum number of edge-disjoint odd TT-joins. A signature is a set of the form Σ△δ(U)\Sigma\triangle \delta(U) where U⊆V(G)U\subseteq V(G) and ∣U∩T)|U\cap T) is even. Let τ\tau be the minimum cardinality a TT-cut or a signature can achieve. Then ν≤τ\nu\leq \tau and we say that (G,Σ,T)(G,\Sigma,T) packs if equality holds here. We prove that (G,Σ,T)(G,\Sigma,T) packs if the signed graft is Eulerian and it excludes two special non-packing minors. Our result confirms the Cycling Conjecture for the class of clutters of odd TT-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing TT-joins with at most four terminals, and a new result on covering edges with cuts.Comment: extended abstract appeared in IPCO 2014 (under the different title "the cycling property for the clutter of odd st-walks"

    Decomposition, Approximation, and Coloring of Odd-Minor-Free Graphs

    Full text link
    corecore