8,083 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Integration Protocols for Voice and Data Traffic

    Get PDF
    Increasing demands for multimedia services offer integration of multimedia traffic as a hot issue in the future research areas. As a result, in the literature, many multiplexing schemes have been proposed. However, most of them have been implemented with a high complexity, others may be non-effective to satisfy the multiplexing performance criteria, while the rest are still not subjected to a wide range of analysis. Therefore, there is a critical need for comparing some of the recommended multiplexing schemes as well as developing a simple and effective integration protocol while still achieving reasonable bandwidth utilization. This thesis is intended to examine integration protocols for multimedia traffic, with primary focusing on voice-data integration. Firstly, a survey of the existing multiplexing schemes and related issues are presented. Next, an Adaptive Round Robin (ARR) protocol is proposed, as an alternative for voice-data integration, and extensively simulated. Finally, further comparisons, based on computer simulations, are carried out for various multiplexing schemes including Strictly Priority Servicing (SPS), Fixed Round Robin (FRR), Dynamic Bandwidth Allocation/(T1, T2) and Queue Length Threshold (QLT).As a contribution of the thesis, the proposed protocol tries to avoid the drawbacks of the previous multiplexing schemes besides satisfying the multiplexing performance criteria. The protocol differs from the others in that, it gives a limited priority for voice over data, it organizes the incoming packets to the single First-in First-out (FIFO) output buffer rather than the only outgoing scheduling, i.e., all data sources are polled in order according to the adaptation policy; however, before a data source can send a packet, all active voice sources are polled in order. Thus it provides an improvement in voice delay performance without significant effect on data delay performance over previous protocols. In addition, simulation comparisons between various multiplexing schemes have been discussed. In these simulations voice packets are assumed to be generated from on-off sources (talkspurt-silence calls), which is closer to reality and which is not considered in most of the performance analyses of previous schemes

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Multiclass scheduling algorithms for the DAVID metro network

    Get PDF
    Abstract—The data and voice integration over dense wavelength-division-multiplexing (DAVID) project proposes a metro network architecture based on several wavelength-division-multiplexing (WDM) rings interconnected via a bufferless optical switch called Hub. The Hub provides a programmable interconnection among rings on the basis of the outcome of a scheduling algorithm. Nodes connected to rings groom traffic from Internet protocol routers and Ethernet switches and share ring resources. In this paper, we address the problem of designing efficient centralized scheduling algorithms for supporting multiclass traffic services in the DAVID metro network. Two traffic classes are considered: a best-effort class, and a high-priority class with bandwidth guarantees. We define the multiclass scheduling problem at the Hub considering two different node architectures: a simpler one that relies on a complete separation between transmission and reception resources (i.e., WDM channels) and a more complex one in which nodes fully share transmission and reception channels using an erasure stage to drop received packets, thereby allowing wavelength reuse. We propose both optimum and heuristic solutions, and evaluate their performance by simulation, showing that heuristic solutions exhibit a behavior very close to the optimum solution. Index Terms—Data and voice integration over dense wavelength-division multiplexing (DAVID), metropolitan area network, multiclass scheduling, optical ring, wavelength-division multiplexing (WDM). I

    Traffic and task allocation in networks and the cloud

    Get PDF
    Communication services such as telephony, broadband and TV are increasingly migrating into Internet Protocol(IP) based networks because of the consolidation of telephone and data networks. Meanwhile, the increasingly wide application of Cloud Computing enables the accommodation of tens of thousands of applications from the general public or enterprise users which make use of Cloud services on-demand through IP networks such as the Internet. Real-Time services over IP (RTIP) have also been increasingly significant due to the convergence of network services, and the real-time needs of the Internet of Things (IoT) will strengthen this trend. Such Real-Time applications have strict Quality of Service (QoS) constraints, posing a major challenge for IP networks. The Cognitive Packet Network (CPN) has been designed as a QoS-driven protocol that addresses user-oriented QoS demands by adaptively routing packets based on online sensing and measurement. Thus in this thesis we first describe our design for a novel ``Real-Time (RT) traffic over CPN'' protocol which uses QoS goals that match the needs of voice packet delivery in the presence of other background traffic under varied traffic conditions; we present its experimental evaluation via measurements of key QoS metrics such as packet delay, delay variation (jitter) and packet loss ratio. Pursuing our investigation of packet routing in the Internet, we then propose a novel Big Data and Machine Learning approach for real-time Internet scale Route Optimisation based on Quality-of-Service using an overlay network, and evaluate is performance. Based on the collection of data sampled each 22 minutes over a large number of source-destinations pairs, we observe that intercontinental Internet Protocol (IP) paths are far from optimal with respect to metrics such as end-to-end round-trip delay. On the other hand, our machine learning based overlay network routing scheme exploits large scale data collected from communicating node pairs to select overlay paths, while it uses IP between neighbouring overlay nodes. We report measurements over a week long experiment with several million data points shows substantially better end-to-end QoS than is observed with pure IP routing. Pursuing the machine learning approach, we then address the challenging problem of dispatching incoming tasks to servers in Cloud systems so as to offer the best QoS and reliable job execution; an experimental system (the Task Allocation Platform) that we have developed is presented and used to compare several task allocation schemes, including a model driven algorithm, a reinforcement learning based scheme, and a ``sensible’’ allocation algorithm that assigns tasks to sub-systems that are observed to provide lower response time. These schemes are compared via measurements both among themselves and against a standard round-robin scheduler, with two architectures (with homogenous and heterogenous hosts having different processing capacities) and the conditions under which the different schemes offer better QoS are discussed. Since Cloud systems include both locally based servers at user premises and remote servers and multiple Clouds that can be reached over the Internet, we also describe a smart distributed system that combines local and remote Cloud facilities, allocating tasks dynamically to the service that offers the best overall QoS, and it includes a routing overlay which minimizes network delay for data transfer between Clouds. Internet-scale experiments that we report exhibit the effectiveness of our approach in adaptively distributing workload across multiple Clouds.Open Acces
    corecore