2,276 research outputs found

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this paper, we proposed an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution.特

    Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission

    Get PDF
    Energy harvesting (EH) provides a means of greatly enhancing the lifetime of wireless sensor nodes. However, the randomness inherent in the EH process may cause significant delay for performing sensing operation and transmitting the sensed information to the sink. Unlike most existing studies on the delay performance of EH sensor networks, where only the energy consumption of transmission is considered, we consider the energy costs of both sensing and transmission. Specifically, we consider an EH sensor that monitors some status environmental property and adopts a harvest-then-use protocol to perform sensing and transmission. To comprehensively study the delay performance, we consider two complementary metrics and analytically derive their statistics: (i) update age - measuring the time taken from when information is obtained by the sensor to when the sensed information is successfully transmitted to the sink, i.e., how timely the updated information at the sink is, and (ii) update cycle - measuring the time duration between two consecutive successful transmissions, i.e., how frequently the information at the sink is updated. Our results show that the consideration of sensing energy cost leads to an important tradeoff between the two metrics: more frequent updates result in less timely information available at the sink.Comment: submitted for possible journal publicatio

    DTER: Schedule Optimal RF Energy Request and Harvest for Internet of Things

    Full text link
    We propose a new energy harvesting strategy that uses a dedicated energy source (ES) to optimally replenish energy for radio frequency (RF) energy harvesting powered Internet of Things. Specifically, we develop a two-step dual tunnel energy requesting (DTER) strategy that minimizes the energy consumption on both the energy harvesting device and the ES. Besides the causality and capacity constraints that are investigated in the existing approaches, DTER also takes into account the overhead issue and the nonlinear charge characteristics of an energy storage component to make the proposed strategy practical. Both offline and online scenarios are considered in the second step of DTER. To solve the nonlinear optimization problem of the offline scenario, we convert the design of offline optimal energy requesting problem into a classic shortest path problem and thus a global optimal solution can be obtained through dynamic programming (DP) algorithms. The online suboptimal transmission strategy is developed as well. Simulation study verifies that the online strategy can achieve almost the same energy efficiency as the global optimal solution in the long term

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application
    corecore