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Abstract—Energy harvesting (EH) provides a means of greatly
enhancing the lifetime of wireless sensor nodes. However, the
randomness inherent in the EH process may cause significant
delay for performing sensing operation and transmitting the
sensed information to the sink. Unlike most existing studies on
the delay performance of EH sensor networks, where only the
energy consumption of transmission is considered, we consider
the energy costs of both sensing and transmission. Specifically,
we consider an EH sensor that monitors some status property
and adopts a harvest-then-use protocol to perform sensing and
transmission. To comprehensively study the delay performance,
we consider two complementary metrics and analytically derive
their statistics: (i) update age - measuring the time taken from
when information is obtained by the sensor to when the sensed
information is successfully transmitted to the sink, i.e.,how timely
the updated information at the sink is, and (ii) update cycle-
measuring the time duration between two consecutive successful
transmissions, i.e., how frequently the information at thesink
is updated. Our results show that the consideration of sensing
energy cost leads to an important tradeoff between the two
metrics: more frequent updates result in less timely information
available at the sink.

Index Terms—Energy harvesting, wirelessly powered commu-
nications, delay analysis, energy costs of sensing and transmis-
sion.

I. I NTRODUCTION

Background: Energy harvesting (EH) from energy sources
in the ambient environment is an attractive solution to power
wireless sensor networks (WSNs). The feasibility of powering
WSNs by EH from solar, wind, vibration and radio-frequency
(RF) signals has been demonstrated in the literature [1–5].If
an EH source is periodically or continuously available, a sen-
sor node can in theory be powered perpetually. However, the
design of EH WSNs raises several interesting and challenging
issues.

Design Challenges:An important design consideration for
EH WSNs is the modeling of energy costs. There are three
main energy costs in wireless sensors [6]: (i) energy cost ofRF
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transmission and reception, including idle listening, (ii) energy
cost of information sensing and processing, and (iii) energy
cost of other basic processing while being active. Generally,
the energy cost of other basic processing is much smaller
compared to the energy cost of transmission [7]. Hence, the
majority of the current work on EH WSNs has considered
only the energy cost of transmission, while ignoring the energy
cost of sensing [8], [9]. For some sensors, such as high-rate
and high-resolution acoustic and seismic sensors, the energy
cost of sensing can actually be higher than the energy cost of
transmission, e.g., see [10] and references there in. Hence, it
is important to accurately model the energy cost of sensing in
WSNs [11].

For WSNs powered by EH from the ambient environment,
the energy arrival process is inherently time-varying in nature.
These fluctuations in the energy arrival process can be slow
or fast and are characterised by its coherence time [12]. For
instance, for the case of EH from a solar panel on a clear
day with abundant sunshine, the coherence time is on the
order of minutes or hours. For the case of wireless energy
transfer via RF signals, the coherence time can be on the
order of milliseconds, which is comparable to the duration
of a communication time slot. The energy arrival process in
the latter case can be modeled as a random process where the
amount of harvested energy in each time slot follows some
probability distribution. For example, papers studying EHfrom
RF signals often assume an exponential distribution [13–15].
Another example, using the gamma distribution, can be found
in [16]. However, many energy arrival processes in practice
cannot be accurately modeled by using exponential or gamma
distributions. The consideration of a more general probability
distribution for modeling the amount of energy arrival is still
largely an open problem.

In many sensor network applications, the delay performance
is a key design challenge. The effects of randomness in both
arrivals of the multiple data packets and harvested energy
on the overall transmission completion time were considered
in [17]. In [13], a single data packet and randomness in the
energy arrival process and wireless channel, were considered
in the analysis of transmission delay, i.e., the time duration
between the generation of a packet and its successful reception
at the sink. However, both [17] and [13] only considered the
energy cost of transmission. To the best of our knowledge,
a comprehensive analysis of the delay performance of EH
WSNs taking into account a realistic model of sensor energy
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costs, has not been investigated in the literature.

Paper Contributions: We consider a statusmonitoringsce-
nario, e.g., monitoring some property of a target environment,
with one sensor-sink pair. The sensor is solely powered by
EH from an ambient energy source. The sensor periodically
monitors and senses the current environment, i.e., it generates
current status information about one or more variables of inter-
est, and then transmits a status-information-containing packet
to the sink1. Once the packets are successfully transmitted to
the sink, which may occur after several failed retransmissions
due to fading in the transmission channel, the status under
monitoring isupdatedat the sink.

We adopt two different metrics to assess the delay per-
formance: (i) update age2 which measures the time dura-
tion between the time of generation of the current status
information at the sink and the time at which it is updated
at the sink, and (ii) update cycle which measures the time
duration between one status update at the sink to the next.
The update age (or freshness) and update cycle (or frequency)
are complementary measures. For instance, a smaller update
age means the updated status information at the sink is much
more timely, but does not indicate when the next update
status information will be received. A smaller update cycle
means more frequent status updates at the sink, but does
not indicate when the current updated status information was
originally generated or how old it is. Thus, the quality of a
status monitoring system, i.e., the status update freshness and
frequency, is comprehensively captured by the update age and
update cycle, respectively.

We account for the fact that sensing and transmission
operations both consume energy. Inspired from the harvest-
then-use and save-then-transmit communication protocolsfor
EH nodes in wireless networks [13], [14], [16], which are
simple to implement in practice, we consider a harvest-then-
use protocol for the EH sensor. In our proposed protocol, the
sensor performs sensing and transmission as soon as it has
harvested sufficient energy. In order to limit the delay due to
retransmissions, we impose a time window for retransmissions.
The delay performance of the considered harvest-then-use
protocol is analyzed. The main contributions of this paper are
as follows:

• We provide a comprehensive study on the delay perfor-
mance of EH sensor networks. Apart from the commonly
considered delay due to the information transmission
from the sensor to the sink, defined as the update age,
we also characterize the frequency of updating the infor-
mation held by the sink, defined as the update cycle.

• Considering a Rayleigh fading wireless channel, we ana-
lytically derive the statistics of both the update cycle and

1Due to the fluctuation in the energy arrival process, strictly periodic sensing
and transmission is not possible. In this paper, ‘periodic’is used to indicate
that the sensor alternates between sensing and transmission(s) in order to keep
status updating at the sink.

2The term update age is inspired by [18] and indicates the age or timeliness
of the transmitted information, since an outdated message may lose its value
in a communication system when the receiver has interest in fresh information
[19]. Note that this notion of the delay is in fact the same as the transmission
delay in [13].

the update age. We consider both a deterministic energy
arrival model and a random energy arrival model with a
general distribution, so that our results can be applied to
model a wide range of EH processes.

• We take the energy costs of both sensing and transmis-
sion into account when studying the delay performance.
Such a consideration brings up an interesting question
of whether to increase or reduce the number of allowed
retransmission attempts for each sensed information, be-
cause both sensing and transmission consume energy.
This in turn results in a tradeoff between the update
cycle and the update age. The tradeoff emphasizes the
importance of modeling the energy cost of sensing.

Notations: E {·} andPr {·} are expectation and probability
operators, respectively. Convolution operators for continuous
and discrete functions are denoted as⋆ and∗, respectively.⌈·⌉
and⌊·⌋ are ceiling and floor operators, respectively.

∑n

i=m is
the summation operator, and ifm > n, the result is zero.
Pois (i, λ) is the probability mass function (pmf) of a Poisson
distribution with parameterλ.

II. SYSTEM MODEL

We consider the transmission scenario where a sensor
periodically transmits its sensed information to a sink, as
illustrated in Fig. 1. The sensor is an EH node which harvests
energy from the ambient environment such as solar, wind,
vibration or RF signals. The sensor has two main functions,
i.e., sensing and transmission, each having individual energy
cost. We assume half-duplex operation, i.e., sensing and trans-
mission cannot occur at the same time. In order to perform
either sensing or transmission, the sensor first needs to spend
a certain amount of time on EH. The harvested energy is
stored in a battery. We assume that the battery cannot charge
and discharge at the same time [16]. In addition, the battery
has sufficient charge capacity such that the amount of energy
stored in the battery never reaches its maximum capacity.
This assumption is reasonable since battery capacity typically
ranges from joules to thousands of joules [1], while the energy
level in the battery in our system is only in theµJ range as
shown in Section V.

Following the state-of-the-art EH sensor design prac-
tice [20], we adopt a time-slotted or block-wise operation.
We assume that one sensing operation or one transmission is
performed in one time block of durationT seconds.3 At the
beginning of each block, we assume that the sensor checks the
battery energy state and makes a decision to perform either
sensing, transmission, or energy harvesting. Thus, we define
the following types of time blocks with the associated amount
of energy cost/harvesting:
• Sensing Block (SB): the sensor samples the status informa-

tion and then processes and packs sensed information into
a data packet. The energy cost in a SB is denoted byESB.

• Transmission Block (TB): the sensor transmits the newest
generated data packet (from the last sensing operation) to

3In general a sensor may spend different amounts of time on onesensing
operation [10]. Thus, the assumed protocol and analysis canbe generalized
to different sensing time durations other thanT , which is outside the scope
of this work.
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Fig. 1 Illustration of system model and sensor components.

the sink with energy costETB, i.e., the transmit power is
PTB = ETB/T . Then the sink sends a one-bit feedback sig-
nal to the sensor to indicate successful packet reception. We
assume that the time consumed for receiving the feedback
signal at the sensor is negligible as compared to its packet
transmission time. If the transmission is successful, we have
a successful transmission block (STB); otherwise, we have
a failed transmission block (FTB). We assume that suc-
cesses/failures of each TB are mutually independent [13],
[14]. The probability of a TB being a FTB, i.e., transmission
outage, is denoted byPout.

• Energy-harvesting block (EHB): the sensor harvests energy
from the ambient environment and stores the energy in its
battery.

A. Proposed Sensing and Transmission Protocol

Since the time-varying EH process results in randomness in
the delay for performing sensing and transmission, we propose
a harvest-then-use protocol with a time window for retransmis-
sions in order to improve the delay-related performance.

The protocol is motivated as follows.Firstly, considering
the energy cost of sensing, it is necessary to harvest sufficient
energy,ESB, before sensing can occur. However, it is unwise to
perform sensing as soon as the harvested energy reachesESB
because there will be insufficient energy left for transmission
after the sensing operation. The time spent on EH due to
insufficient energy for transmitting the sensed information
will result in unnecessary delay. To avoid such delay, we
define the condition for the sensing operation to be when the
harvested energy in the battery exceedsESB + ETB. In this
way, a transmission of sensed information occurs immediately
after the sensing operation (i.e., a SB is always followed
by a TB). Secondly, in the event that the transmission is
not successful due to the fading channel between the sensor
and sink, we need to allow for retransmissions, which are a
common feature in conventional (non-EH) WSNs [21]. In this
paper, we impose a time window for retransmissions to control
the delay caused by unsuccessful transmissions because it is
unwise to spend an indefinite amount of time trying to transmit
outdated information. We denoteW as the maximum number
of time blocks after a SB, within which transmissions of the
currently sensed information can take place. Since the first

transmission attempt always happens immediately after the
SB, the time window for retransmissions isW−1 time blocks.

Under the proposed protocol, the sensor operates as follows:

1) First, the sensor uses several EHBs to harvest enough
energy,ESB + ETB, and then a SB and a TB occur.

2) If the transmission in the TB is successful, i.e., we have a
STB, the sensor harvests energy (taking several EHBs) for
the next sensing period until the battery energy exceeds
ESB + ETB.

3) If the transmission in the TB fails, i.e., we have a FTB,
the sensor goes back to harvest energy (taking several
EHBs) and performs a retransmission when the battery
energy exceedsETB.

4) Retransmission may occur several times until the sensed
information is successfully transmitted to the sink or
the time window for retransmissionsW − 1 is reached.
Then, the data packet at the sensor is dropped and the
sensor goes back to harvest the energy for a new sensing
operation.

Fig. 2 illustrates this protocol withW = 7. In the example
shown, the first block in Fig. 2 is a SB, followed by two FTBs
(and two EHBs in between). Since the third TB is a STB, the
sensed information in the first SB is successfully transmitted
to the sink. Then, the sensor uses three EHBs to harvest energy
to conduct sensing in the next SB. After the second SB, there
are three TBs during7 time blocks, and all of them are FTBs.
Thus, the retransmission process is terminated afterW = 7 is
reached. As a result, the sensed information in the second SB
is not transmitted to the sink. The time indices shown in Fig.
2 will be defined in the following section.

B. Proposed Models for Energy Arrival

In this paper, we consider that the harvested energy in each
EHB could eitherremain constantor changefrom block to
block. The former is referred to as deterministic energy arrival,
while the latter is referred to as random energy arrival.

Deterministic energy arrival is an appropriate model when
the coherence time of the EH process is much larger than
the duration of the entire communication session, such as EH
by solar panel on clear days [12], [22], [23]. In this paper,
we denote this asdeterministic energy arrival process. For
tractability, we also assume thatESB andETB represent integer
multiples of the harvested energy by one EHB,ρ.

For random energy arrivals, we consider independent and
identically distributed (i.i.d.) random energy arrival model4

with a general probability distribution function for the amount
of energy harvested in each EHB. This energy arrival model
is referred to asgeneral random energy arrival process. The
previously considered exponential and gamma distributions
in [13], [14], [16] become as special cases of the general
probability distribution in this work. Since the exponential
distribution is commonly studied for wireless power transfer

4The i.i.d. energy arrival model is commonly considered in the litera-
ture [16], [24], [25]. There are other energy arrival modelscaptures the
temporal correlation of the energy arrival process, such asdiscrete-Markovian
modeling [8], [9], [26], which are beyond the scope of this work.
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Fig. 2 Illustration of update cycle and update age.

using RF signals, we will also provide results for this im-
portant special case and referred to it asexponential energy
arrival process.

III. D ELAY-RELATED METRICS

As described in the previous section, both sensing and
(re)transmission requires a variable amount of EH time, which
may result in significant delays in obtaining the sensed infor-
mation at the sink. In this section, we consider two metrics to
measure the delay performance of the considered sensing and
transmission protocol.

For the convenience of describing the two metrics, as
shown in Fig. 2, we usetSTB,j to denote the block index
for the jth STB during the entire sensing and transmission
operation. Note that a successful transmission also induces
an information update at the sink. Also, it is important to
associate each transmission with its information content.To
this end, we usetSB,j to denote the block index for the SB in
which the sensed information is transmitted in thejth STB. In
other words, status information sensed attSB,j is successfully
transmitted to the sink attSTB,j. Next, we define two delay-
related metrics, expressed in terms of the number of time
blocks:

A. Update Age and Update Cycle

Definition 1 (Update age). For thejth STB, the update age
is given by the number of time blocks fromtSB,j to tSTB,j

(shown in Fig. 2). Thejth update age is

TUA,j = tSTB,j − tSB,j , j = 1, 2, 3, .... (1)

Remark 1. The update age measures the time elapsed from
the generation of a status-information-containing packetat the
sensor to the reception of the packet, i.e., status update, at
the sink. This metric is referred to as the status update age
in [18]. A larger update age implies that a more outdated status
is received by the sink. The update age, which captures the
freshness of the updated status information, however, doesnot
reflect the update frequency at the sink. Rather, the update
frequency is captured by the update cycle which is presented
below:

Definition 2 (Update cycle). For thejth STB, the update cycle
is given by the number of time blocks fromtSTB,j−1 to tSTB,j

(shown in Fig. 2). Thejth update cycle is

TUC,j = tSTB,j+1 − tSTB,j , j = 1, 2, 3, .... (2)

Remark 2. The update cycle measures the time elapsed from
one status update at the sink to the next. The update cycle,
however, does not reflect the update freshness at the sink.
Unlike the update age, the update cycle takes into account the
delay due to dropped data packets. Therefore, update cycle
complements update age, and they jointly capture the update
frequency and freshness, to provide comprehensive metricson
the delay performance of a status monitoring system.

B. Modeling Delay-Related Metrics as i.i.d. Random Vari-
ables

To model each of the update age/update cycle as i.i.d.
random variables, we focus on the steady-state behavior as
characterized in Lemma 1.

Lemma 1. For a deterministic energy arrival process, the
energy level after each TB is zero. For a general random
energy arrival process with pdf containing at least one positive
right-continuous point,f(ǫ), the steady-state distribution of the
energy level after each TB has pdf

g (ǫ) =
1

ρ
(1− F (ǫ)) , (3)

where ρ is the average harvested energy, andF (ǫ) is the
cumulative distribution function (cdf) corresponding tof(ǫ).

Proof: For a deterministic energy arrival process, Lemma
1 is straightforward. For a general random energy arrival
process, the proof is given in Appendix B.

According to the sensing and transmission protocol defined
in the previous section, each SB is directly followed by a
TB. From Lemma 1, the steady-state distribution of available
energy after any TB is the same. Hence, the steady-state
distribution of the available energy aftertSTB,j is the same for
all j. Because the successes/failures of each TB are mutually
independent, andTUC,j is determined by both the available
energy aftertSTB,j and the successes/failures of the following
TBs,TUC,j are i.i.d. for allj. Similarly, it is also easy to show
that TUA,j are i.i.d. for all j. For convenience, we remove
subscriptj for TUC andTUA in (2) and (1), respectively.
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IV. U PDATE AGE

In this section, considering the dynamics of an energy arrival
process and the probability of successful/failed transmission
in our proposed harvest-then-use protocol, the update age for
deterministic, general random and exponential energy arrival
processes are analyzed.

A. Deterministic Energy Arrival Process

Theorem 1. For a deterministic energy arrival process, the
update age pmf is given by

Pr {TUA=k}=
(1−Pout)(Pout)

n−1

Psuc
, k=1+(n−1)

(
ETB

ρ
+1

)

,

(4)
where

n = 1, 2, ...n̂, n̂ = 1+

⌊

W − 1

1 + ETB

ρ

⌋

, Psuc = 1−(Pout)
n̂
, (5)

and Pout is the probability of a TB being a FTB, defined in
Section II.

Proof: See Appendix D.
From Theorem 1, the average update age,T̄UA for a determin-
istic energy arrival process is straightforwardly obtained as in
Corollary 1.

Corollary 1. For a deterministic energy arrival process,
average update age is given by

T̄UA =

n̂∑

n=1

(

1 + (n− 1)

(
ETB

ρ
+ 1

))
(1 − Pout) (Pout)

n−1

Psuc
,

(6)
wherePsuc is given in(5).

B. General Random Energy Arrival Process

Theorem 2. For a general random energy arrival process, the
update age pmf5 is given by

Pr {TUA=k}=







1− Pout

Psuc
, k = 1,

(1− Pout)

Psuc

k∑

n=2

(Pout)
n−1(Gk−n−1((n− 1)ETB)

−Gk−n((n− 1)ETB)) , 2≤k≤W,
(7)

where

Psuc=1−Pout+(1−Pout)

W∑

l=2

l∑

n=2

(Pout)
n−1

(Gl−n−1((n−1)ETB)

−Gl−n((n−1)ETB)) ,
(8)

and

Gi(x) =







1, i = −1,
x∫

0

(g ⋆f ⋆ f ⋆ ... ⋆ f
︸ ︷︷ ︸

i convolutions

)(u)du, i ≥ 0.
(9)

5Although the general expression in Theorem 2 contains multiple integrals
in Eq. (9), for special cases, such as deterministic and exponential energy
arrival processeses, the results given in Theorems 1 and 3 are closed-form
expressions.

g(x) and f(x) are defined in Lemma 1.

Proof: See Appendix D.
From Theorem 2, the average update age,T̄UA for a general

random energy arrival process is obtained straightforwardly as
in Corollary 2.

Corollary 2. For a general random energy arrival process,
average update age is given by

T̄UA=
1−Pout

Psuc

(

1+

W∑

l=2

l

l∑

n=2

(Pout)
n−1

(Gl−n−1((n−1)ETB)

−Gl−n((n−1)ETB))) ,
(10)

wherePsuc is given in(8).

C. Exponential Energy Arrival Process

Theorem 3. For an exponential energy arrival process, the
update age pmf is given by

Pr {TUA = k} =







1− Pout

Psuc
, k = 1,

(1− Pout)

Psuc

k∑

n=2

(Pout)
n−1 ×

Pois

(

k − n, (n− 1)
ETB

ρ

)

, 2 ≤ k ≤ W,

(11)
where

Psuc=1−Pout+(1−Pout)

W∑

l=2

l∑

n=2

(Pout)
n−1

Pois

(

l−n,(n−1)
ETB

ρ

)

,

(12)

Proof: See Appendix D.
From Theorem 3, the average update age,T̄UA for an expo-
nential energy arrival process is straightforwardly obtained as
in Corollary 3.

Corollary 3. For an exponential energy arrival process,
average update age is given by

T̄UA=
(1−Pout)

Psuc

(

1+
W∑

l=2

l
l∑

n=2

(Pout)
n−1Pois

(

l−n,(n−1)
ETB

ρ

))

,

(13)
wherePsuc is given in(12).

From Theorems 1-3 and Corollaries 1-3, we see that differ-
ent energy arrival processes induce different pmfs and average
values of update age. For benchmarking with the existing
studies on delay without imposing a constraint on the time
window for retransmissions [13], we letW → ∞, so that all
sensed information is eventually transmitted to the sink, the
average update age is the same under different energy arrival
processes as in Corollary 4.

Corollary 4. For a deterministic or general random energy
arrival process,T̄UA increases withW , and asW gets large,
the asymptotic upper bound of̄TUA is independent with energy
arrival distribution and is given by

lim
W→∞

T̄UA = 1 +
Pout

1− Pout

(
ETB

ρ
+ 1

)

. (14)
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Proof: See Appendix G.

Remark 3. From the above analytical results, we have that:
i) From Theorems 1 to 3,TUA is independent of the

energy cost of sensing,ESB, because the delay is only
affected by the energy harvesting and retransmissions that
happen after the sensing operation. This might give the
impression that energy cost of sensing does not affect
delay. However, update age is only one of the two delay
metrics, and the energy cost of sensing has important
impacts on update cycle, which will be investigated in
the next section.

ii) Allowing a larger window for retransmissions increases
the average update age. This might suggest that retrans-
missions should be avoided, i.e.,W = 1. However, the
update age does not take into account cases where sensed
information is not successfully transmitted to the sink.
In this regard, the update cycle implicitly captures such
cases.

V. UPDATE CYCLE

In this section, considering the dynamics of an energy arrival
process and the probability of successful/failed transmission in
our proposed harvest-then-use protocol, the update cycle for
deterministic, general random and exponential energy arrival
processes are analyzed.

A. Deterministic Energy Arrival Process

Theorem 4. For a deterministic energy arrival process, the
update cycle pmf is given by

Pr {TUC=k} = (1− Pout) (Pout)
n−1+mn̂ ,

k=

(
ESB + nETB

ρ

)

+n+1+m

(
ESB + n̂ETB

ρ
+(n̂+1)

)

,

(15)
wheren = 1, 2, ...n̂,m = 0, 1, 2, ..., and n̂ is given in(5).

Proof: See Appendix E.

Corollary 5. For a deterministic energy arrival process,
average of update cycle is given by

T̄UC =
(Pout)

n̂

1− (Pout)
n̂

(

1 + n̂+
ESB+n̂ETB

ρ

)

+
ESB
ρ

+ 1

+ (1 +
ETB

ρ
)

1− Pout

1− (Pout)
n̂

n̂∑

n=1

(Pout)
n−1 n.

(16)

Proof: See Appendix F.

B. General Random Energy Arrival Process

Theorem 5. For a general random energy arrival process, the
update cycle pmf is given by

Pr {TUC=k} =

m̂∑

m=0



ζ(ESB+ETB) ∗ζ(ESB) ∗ · · · ∗ ζ(ESB)
︸ ︷︷ ︸

m convolutions

∗ϑ ∗ · · · ∗ ϑ
︸ ︷︷ ︸

m convolutions

∗ι



(k−m(1+W )−1), k = 2, 3, ....

(17)

wherem̂ =
⌊

k−2
W+1

⌋

, and functionsζ(E , i), ι(i) and ϑ(i) are
given by

ζ(E , i) = Gi−1(E)−Gi(E), (18a)

ι(i) = PsucPr {TUA = i} , (18b)

ϑ(i) = Pout (GW+i−2(ETB)−GW+i−1(ETB))

+

W∑

l=2

l∑

n=2

(Pout)
n
(Gl−n−1((n− 1)ETB)−Gl−n((n− 1)ETB))×

(GW+i−l−1(ETB)−GW+i−l(ETB)) .
(18c)

Pr {TUA = i}, Psuc andGi(E) are given in(7), (8) and (9),
respectively.

Proof: See Appendix E.

Corollary 6. For a general random energy arrival process,
average update cycle is given by

T̄UC =
1− Psuc

Psuc

(
ESB
ρ

+ V̄ +W + 1

)

+
ESB + ETB

ρ
+T̄UA+1,

(19)
wherePsuc and T̄UA are respectively given in(8) and (10),
and V̄ is given in(20) shown at the top of next page.

Proof: See Appendix F.

C. Exponential Energy Arrival Process

Theorem 6. For an exponential energy arrival process, the
update cycle pmf is given by

Pr {TUC=k} =

m̂∑

m=0

(ζ((m+1)ESB+ETB)

∗ϑ∗ · · ·∗ ϑ
︸ ︷︷ ︸

m convolutions

∗ι



(k−m(1+W )−1), k = 2, 3, ....

(21)

wherem̂ =
⌊

k−2
W+1

⌋

, and functionsζ(E , i), ι(i) and ϑ(i) are
given by

ζ(E , i) = Pois (i, E/ρ) , (22a)

ι(i) = PsucPr {TUA = i} , (22b)

ϑ(i) = PoutPois (W + i− 1, ETB/ρ)

+

W∑

l=2

l∑

n=2

(Pout)
n
Pois (l−n, (n−1)ETB/ρ)Pois (W+i−l, ETB/ρ),

(22c)

and Pr {TUA = i} and Psuc are given in (11) and (12),
respectively.

Proof: See Appendix E.

Corollary 7. For an exponential energy arrival process,
average update cycle is given by

T̄UC =
1− Psuc

Psuc

(
ESB
ρ

+ V̄ +W + 1

)

+
ESB + ETB

ρ
+T̄UA+1,

(23)
where T̄UA and Psuc are given in (13) and (12), and V̄ is
given in (24) shown at the top of next page.
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V̄ =
Pout

1− Psuc

(

ETB

ρ
−

W−2∑

i=0

i (Gi−1(ETB)−Gi(ETB))−(W−1)

(

1−

W−2∑

i=0

(Gi−1(ETB)−Gi(ETB))

))

+
1

1− Psuc

W∑

l=2

l∑

n=2

(Pout)
n
(Gl−n−1((n− 1)ETB)−Gl−n((n− 1)ETB))×

(

ETB

ρ
−

W−l−1∑

i=0

i (Gi−1(ETB)−Gi(ETB))− (W − l)

(

1−

W−l−1∑

i=0

(Gi−1(ETB)−Gi(ETB))

))

.

(20)

V̄ =
Pout

1− Psuc

(

ETB

ρ
−

W−2∑

i=0

iPois

(

i,
ETB

ρ

)

− (W − 1)

(

1−

W−2∑

i=0

Pois

(

i,
ETB

ρ

)))

+
1

1−Psuc
×

W∑

l=2

l∑

n=2

(Pout)
n
Pois

(

l−n, (n−1)
ETB

ρ

)(

ETB

ρ
−

W−l−1∑

i=0

iPois

(

i,
ETB

ρ

)

−(W−l)

(

1−

W−l−1∑

i=0

Pois

(

i,
ETB

ρ

)))

.

(24)

Proof: See Appendix F.
Similar with the case of update age, different energy arrival

processes induces different pmfs and average values of update
cycle. However, for benchmarking with the existing studies
on delay without imposing a constraint on the maximum
allowable retransmission time, when we consider removing
the constraint of retransmission, i.e.,W → ∞, so that all
sensed information is eventually transmitted to the sink, the
average update cycle is the same under different energy arrival
processes as in Corollary 8.

Corollary 8. For a deterministic or general random energy
arrival process, T̄UC decreases withW , and asW grows
large, the asymptotic lower bound of̄TUC is independent with
energy arrival distribution and is given by

lim
W→∞

T̄UC = 2+
ESB + ETB

ρ
+

Pout

1− Pout

(
ETB

ρ
+ 1

)

. (25)

Proof: See Appendix G.

Remark 4. From the above analytical results, we have that:
i) From Theorems 4 to 6, we know thatTUC is affected

by the energy cost of sensing,ESB. A largerESB means
more EHBs are required to harvest a sufficient amount of
energy to perform sensing operation(s) between adjacent
STBs.

ii) A larger window for retransmissions shorten the average
update cycle, because allowing more retransmissions in-
creases the chance of having a successful transmission.
This might suggest that it is also better to increaseW to
reduce the update cycle. But increasingW also increases
the update age as discussed earlier. Therefore, there is
clearly a tradeoff between the two metrics.

VI. N UMERICAL RESULTS

In this section, we present numerical results for the update
age and update cycle, using the results in Theorems 1-6 and
Corollaries 1-8. The typical outdoor range for a wireless sensor
is from 75 m to 100 m [27]. Hence, we set the distance
between the sensor and the sink asd = 90 m and the path loss
exponent for the sensor-sink transmission link asλ = 3 [13].
The duration of a time block isT = 5 ms [22]. The noise
power at the sink isσ2 = −100 dBm [14]. The average

harvested power is10 mW [28], i.e., average harvested energy
per time block,ρ = 50 µJ. Unless otherwise stated, (i) we
set the power consumption in each TB,PTB = 40 mW,
i.e., ETB = 200 µJ. Note that this includes RF circuit
consumption (main consumption) and the actual RF transmit
powerPtx = −5 dBm6 and (ii) we set the power consumption
in each SB asPSB = 50 mW [10], i.e.,ESB = 250 µJ. In the
following calculations, power and SNR related quantities use
a linear scale. We assume that a transmission outage from the
sensor to the sink occurs when the SNR at the sinkγ, is lower
than SNR thresholdγ0 = 40 dB [15]. The outage probability
is

Pout = Pr {γ < γ0} . (26)

The SNR at the sink is [29]

γ =
|h|2Ptx

Γdλσ2
, (27)

whereh is the source-sink channel fading gain,Γ = PL(d0)

dλ

0

,
is a path loss factor relative to reference distanced0 of the
antenna far field, andPL(d0) is linear-scale path loss, which
depends on the propagation environment [13]. Following [13],
[14], we assumeΓ = 1, for simplicity.

For the numerical results, we assume thath is block-wise
Rayleigh fading. Using (27), the outage probability can be
written as

Pout = 1− exp

(

−
dλσ2γ0
Ptx

)

. (28)

By applying (28) to the theorems and corollaries in Sections
IV and V, we compute the expressions of the pmfs ofTUA

andTUC as well as their average values̄TUA and T̄UC.
Pmfs of update age and update cycle with different

energy arrival processes:First, we consider a deterministic
energy arrival process with harvested energy in each EHB,
ρ. Also we consider two special cases of the general random
energy arrival process: (i) exponential energy arrival processes
with average harvested energy in each EHB,ρ and (ii) ran-
dom energy arrival processes with gamma distribution [16],
Gamma(0.05, 1000). We term this as thegamma energy
arrival process, and it is easy to verify that this gamma energy

6The values we chose forPTB andPtx are typical for commercial sensor
platforms, such as MICAz [27].
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Fig. 3: pmfs forTUA andTUC with
deterministic energy arrival process.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

TUA, time blocks

p
m
f
o
f
T
U
A

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

TUC, time blocks
p
m
f
o
f
T
U
C

Fig. 4: pmfs forTUA andTUC with
gamma energy arrival process.
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Fig. 5: pmfs forTUA andTUC with
exponential energy arrival process.

arrival process has the same average harvested energy in
each EHB as the deterministic and exponential energy arrival
processes.

Figs. 3-5 plot the pmfs of update age,TUA, and update
cycle, TUC, for the deterministic, gamma and exponential
energy arrival process, respectively. The analytical results are
plotted using Theorems 1-6, and we setW = 50, i.e., the time
window for retransmissions isW − 1 = 49 time blocks. In
particular, in Fig. 4 the analytical pmfs ofTUA andTUC for the
general random arrival process are obtained using Theorems
2 and 5. The results in Figs. 4-5 also illustrate the importance
of the general random energy arrival process, which is used
in this work. This is because gamma and exponential energy
arrival processes, which have been used in the literature [13–
16], are special cases of the general random energy arrival
process.We see that different energy arrival processes result
in different pmfs of update age and update cycle. Hence, a
statistical analysis of the two metrics will provide insight into
the design of future EH WSNs.

In the following figures (Figs. 6-9), we only present the
numerical results for the average values of the two delay
metrics, which have been presented in Corollaries 1-8.

Average update age and average update cycle with
different energy arrival processes:Figs. 6 and 7 show the av-
erage update age,̄TUA, and the average update cycle,T̄UC, for
differentW , i.e., different time windows for retransmissions,
W − 1, and energy arrival processes. The results in Figs. 6
and 7 are generated using Corollaries 1-4 and Corollaries 5-
8, respectively. We can see that the different energy arrival
models result in almost the same values of the average update
age and especially the average update cycle. As the time
window for retransmissions increases, the average update age
increases monotonically and approaches its analytical upper
bound given by Corollary 4, while the average update cycle
decreases monotonically and approaches its analytical lower
bound given by Corollary 8.Thus, with a smaller time window
for retransmissions, the updated status is more fresh, but the
update frequency is lower.

Average update age and average update cycle with
different average harvested power:Fig. 8 shows the average
update age,T̄UA, and the average update cycle,T̄UC, for
different average harvested power values,ρ, with an expo-
nential energy arrival process. The results are plotted using

Corollaries 3 and 7. For the update age, we see that when the
average harvested power is very low, i.e., less than−2 dBm,
the update age is one time block. This is expected since
sufficiently low average harvested power cannot enable any
retransmission during time windowW − 1, i.e., a packet is
either successfully transmitted in the first transmission block
right after the sensing block (an update age of one) or dropped
due to no chance of retransmission. With an increase of
average harvested power, retransmissions are enabled, which
makes the update age increases beyond one. However, when
the average harvested power is higher than8 dBm, the
average update age monotonically decreases with an increase
of the average harvested power. This is as expected: the
sensor requires fewer energy harvesting blocks to perform
retransmissions, and hence, the sink is likely to receive the
packet in a more timely manner (i.e., with a smaller update
age). For the update cycle, we see that the average update cycle
monotonically decreases with average harvested power. Again,
this is expected since a higher average harvested power enables
more transmission blocks within a certain time duration, and
hence, more successful block transmissions are likely to occur
within a given time duration, i.e., the update cycle decreases.
Also we see that when the average harvested power is very
high, i.e., ρ ≥ 30 dBm, both update age and update cycle
converge to constant values which can be obtained by letting
ρ → ∞ in Corollaries 3 and 7, respectively.Thus, without
changing the parameters of the communication protocol, the
improvement in delay performance is limited when increasing
the average harvested power.

Effect of energy cost of sensing on average update
cycle: We illustrate the effect of energy cost of sensing on
average update cycle with exponential energy arrival process
as a special case of the random energy arrival process. Fig. 9
shows the average update age,T̄UA, and the average update
cycle, T̄UC, as a function ofW , with different energy cost
of sensing,PSB. The figure shows that the average update
age increases asW increases (consistent with Fig. 6) but
it does not change with the energy cost of sensing, i.e.,
the energy cost of sensing has no effect on the update age.
This is in perfect agreement with our earlier observations and
explanations provided in Remark 3. We can see that for a fixed
value ofW , the average update cycle increases as the sensing
power consumption increases from50 mW to100 mW, i.e.,the
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energy arrival processes.
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higher the energy cost of sensing the lower update frequency.
This is in perfect agreement with our earlier observations and
explanations provided in Remark 4. To place these results in
context with existing studies in the literature that commonly
ignore the energy cost of sensing, we also include the result
with zero energy cost of sensing. WhenPSB = 0 mW, we can
see thatT̄UC is almost constant around the value of50 and
does not vary much withW .

Tradeoff between average update age and average up-
date cycle:Fig. 10 shows the tradeoff between average update
age,T̄UA, and average update cycle,T̄UC with exponential en-
ergy arrival process. The different points on the same curveare
achieved with differentW . We can see that when the energy
cost of sensing is comparable to or larger than the energy cost
of transmission, e.g.,PSB = 50 mW andPSB = 100 mW,
the reduction inT̄UA can result in a significant increase in
T̄UC, and vice versa. For example, whenPSB = 100 mW,
decreasingT̄UA from 15 to 5 time blocks, causes thēTUC

to increase from75 to 95 time blocks. However, when the
energy cost for sensing is negligible, e.g.,PSB = 0 mW, such
a tradeoff is almost barely noticeable. For example, decreasing
T̄UA from 15 to 5 time blocks, results inT̄UC increasing
by two time blocks, i.e., a significant change in̄TUA does
not result in a noticeable change in̄TUC. These trends in
Fig. 10 are in accordance with our earlier observations in

Remark 4.Thus, with the consideration of sensing energy cost,
an increase of update frequency is achieved at the expense of
update freshness, and vice versa.

Effect of transmit power consumption on average update
age and averge update cycle.Fig. 11 shows the impact of
power consumption on̄TUA and T̄UC, for different values of
transmit powerPTB and RF transmit powerPtx, with an
exponential energy arrival process. In reality,PTB and Ptx

do not have a linear relationship. Three pairs of typical values
found in [25] are chosen. We see that bothT̄UA and T̄UC

decrease withPTB or Ptx. This is as expected: if the transmit
power is small,Pout is high, resulting in a large number of
retransmissions until the sensed information is successfully
transmitted orW − 1 time blocks are reached. As a result,
T̄UA and T̄UC are large when the transmit power is small.
Thus, under these above parameter choices, a higher transmit
power results in better delay performance.

VII. C ONCLUSIONS

This paper has analysed the delay performance of an EH
sensor network, focusing on the operation of a single EH
sensor and its information transmission to a sink. The energy
costs of both sensing and transmission were taken into account.
Two metrics were proposed, namely the update age and update
cycle. In order to limit the delay due to retransmissions, a



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 10

0 5 10 15 20 25 30
T̄UA, time blocks

40

60

80

100

120

140

160

180

T̄
U
C
,
ti
m
e
b
lo
ck
s

PSB = 100 mW

PSB = 50 mW

PSB = 0 mW

Fig. 10: Tradeoff between̄TUC and T̄UA.

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

W

T̄
U
C
o
r
T̄
U
A
,
ti
m
e
b
lo
ck

s

 

 

T̄UC , Ptx = −10 dBm, PTB = 30 mW

T̄UC , Ptx = −5 dBm, PTB = 40 mW

T̄UC , Ptx = 0 dBm, PTB = 50 mW

T̄UA , Ptx = −10 dBm, PTB = 30 mW

T̄UA , Ptx = −5 dBm, PTB = 40 mW

T̄UA , Ptx = 0 dBm, PTB = 50 mW
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time window for retransmissions was imposed. Using both
a deterministic and a general random energy arrival model,
the exact probability mass functions and the mean values of
both metrics were derived. The results showed that the average
update age increases while the average update cycle decreases
with increasing retransmission window length. The average
update age is independent of the energy cost of sensing but the
average update cycle increases as the energy cost of sensing
increases. In addition, a tradeoff between update age and
update cycle was illustrated when the energy cost of sensing
is comparable to the energy cost of transmission. Future work
can consider the impact of non-deterministic time for receiving
the feedback signal at the sensor.

APPENDIX A: PROOF OFLEMMA A1

We first define the block-wise harvest-then-use process, and
then propose and prove Lemma A1.
Definition A1 (Block-wise harvest-then-use process). A
harvest-then-use process consists of energy harvesting blocks
(EHBs) and energy consumption blocks (ECBs). It starts and
keeps on harvesting energy with EHBs. Once the available,
i.e., accumulated, energy is no less than a threshold ofQ
Joules, an ECB occurs, and consumesQ Joules of energy.
If this condition for ECB is not satisfied, the process goes
back to harvest energy with EHBs.

During the harvest-then-use process, the harvested energy
in the ith EHB is represented byξi, i = 1, 2, 3, ..., and the
available energy after thejth ECB is represented bỹΞj , j =
1, 2, 3, .... Due to the randomness of the energy arrival process,
i.e., ξi is a random variable, the available energy after each
ECB, Ξ̃j , is also a random variable which only depends on
ξi. Furthermore, using the statistics ofξi, and modelingΞ̃j ,
j = 1, 2, 3, ..., as a random process, an important feature of
the random process is revealed in Lemma A1.

Lemma A1. For block-wise harvest-then-use process with
energy thresholdQ, where the harvested energy in each EHB,
ξi, i = 1, 2, 3, ..., are independent and identically distributed,
each with pdf containing at least one positive right-continuous
point, f(x), the available energy after each ECB,Ξ̃j , j =
1, 2, 3, ...,, consists of a positive recurrent Harris chain, with
unique steady-state distribution which is given by

g (x) =
1

ρ
(1− F (x)) , (A.1)

whereF (x) and ρ are respectively, the cdf and the mean of
ξi.

Proof: The proof consists of two steps. In the first step, we
prove that the energy state after thejth ECB,Ξ̃j , constitutes a
positive recurrent Harris chain (a collection of Markov chains
with uncountable state space). Thus, a unique steady-state
distribution of Ξ̃j exists [30]. In the second step, we prove
that (A.1) is the unique steady-state distribution.

Step 1: It is easy to see that the current state,Ξ̃j takes its
value from a continuous state space and only relies on the
previous energy statẽΞj−1, thus Ξ̃j , j = 1, 2, 3, ..., forms
a continuous-state Markov chain. Without loss of generality,
we assume thatsup {ξi} = B, thus sup

{

Ξ̃j

}

≤ B holds

in this harvest-then-use process.7 It is easy to see that the
state space of Markov chaiñΞj , S, is a subset of[0, B),
and because of the harvest-then-use protocol, any current state
which is higher thanQ, will access the interval[0, Q) in
the following steps. Thus, we only need to prove that any
states ∈ [0,min{B,Q}) can hit any arbitrary small interval
τ = (τ−, τ+) in S with non-zero probability within finite
steps. Actually, in the following, we complete the proof with
the assumption thatS = [0, B), which also proves that the
state space of Markov chaiñΞi is exactly[0, B).

In the following, using a constructive method, we show
that for Markov chain Ξ̃j , given any current states ∈
[0,min{B,Q}), there is at least a probability,q × p, that any
arbitrary small intervalτ will be accessed with̃j steps, where
p, q, j̃ are defined below which only depends on the states,
the interval lengthτ and the pdf of the harvested energy in
each EHB.

Since pdf functionf(x) has positive right-continuous points
on [0, B), there exists at least one interval[D−, D) that
satisfies [D−, D) ⊂ [0, B), D − D− = τ/2, and f(x)
is positive right-continuous on[D−, D). We assume that
D− ≥ τ+, and theD− < τ+ case can be easily generated
from the the following discussions, thus is omitted due to space
limitation. Now we definep ,

∫ D

D−
f(x)dx as the probability

that harvested energy in one EHB lies in the interval[D−, D).
Also we definef̃(x) = f(x) whenx ∈ [D−, D), otherwise
f̃(x) = 0, andf̃i(x) is thei-fold convolution of functionf̃(x).

7Note that although we assumeB is finite, the infinite case can be easily
generated from the discussions below, thus is omitted due tospace limitation.
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Thus, it is easy to see that̃fi(x) is positive and continuous
in the interval(iD−, iD), and

∫ b

a
f̃i(x)dx is the probability

that the harvested energy byi EHBs lies in the interval[a, b),
while the energy harvested by each of thei EHBs lies in the
interval [D−, D). Thus, letting ĩ , ⌈4(Q+ τ)/τ − 1⌉ and
j̃ , ⌊((̃i + 1)D − τ+)/Q⌋, given the current energy states,
after ĩ EHBs, theaccumulated energy levellies in the interval
A , (s+ ĩD−, s+ ĩD) with positive probability distribution.
Also we see that interval∆ , (j̃Q+τ−−D−, j̃Q+τ+−D) ⊂
A, thus, there is at least (because we have only considered the
scenario that harvested energy by each EHB lies in[D−, D)) a
probability q , inf{

∫

τ̃
f̃ĩ(x), interval τ̃ ⊂ S, length of τ̃ =

length of∆ = τ/2} that the accumulated energy level lies in
∆. Therefore, after the next EHB with probabilityp that the
harvested energy lies in[D−, D), the accumulated energy level
lies in the interval[j̃Q+τ−, j̃Q+τ+), which means that after
the current statẽΞj = s, with j̃ steps (each step consumes the
amount of energy,Q), there is at least a probability,q × p
to make the Markov chain hit the interval(τ−, τ+). Thus,
Markov chainΞ̃j is a positive recurrent Harris chain [30].

Step 2: In the aforementioned Markov chain, we still
assume that the current stateΞ̃j = s. Thus, in the previous
state, the available energy could be higher thanQ, i.e.,
Ξ̃j−1 = s + Q, and Ξ̃j−1 could also be smaller thanQ,
i.e., based on energy level̃Ξj−1, there arei EHBs (i =
1, 2, 3, ...) to make the energy level reachQ + s, which
makes Ξ̃j = s. Based on the above and the Markovian
property, the steady-state distribution of the process,g(x),
should satisfy the following conditions: (1)

∫∞

0 g(x) = 1 and

(2) g(x) = g(x + Q) +
∞∑

i=1

∫ Q+x

x
gi−1(Q + x − y)f(y)dy.

wheregi(x) represent the pdf of energy level afteri EHBs
following a ECB, which is given by

gi(x) =







g(x), i = 0,


g ⋆f ⋆ f ⋆ ... ⋆ f
︸ ︷︷ ︸

i convolutions



(x), i > 0.
(A.2)

Becausef(x) and gi(x) ≥ 0 for all x and i = 0, 1, 2, ...,
by using Tonelli’s theorem for sums and integrals [31], we
exchange the summation and integral operator in Condition 2,
thus we have

g(x) = g(x+Q)+

Q+x∫

x

(
∞∑

i=0

gi(Q+ x− y)

)

f(y)dy. (A.3)

Taking (A.1) into (A.2), we have

gi(x)=
1

ρ







F ⋆f ⋆ f... ⋆ f
︸ ︷︷ ︸

i−1 convolutions



(x)−



F ⋆f ⋆ f... ⋆ f
︸ ︷︷ ︸

i convolutions



(x)



, i>0.

(A.4)
Since 0 ≤ F (x) ≤ 1, f(x) ≥ 0 and

∫∞

0
f(x) = 1, when

i → ∞, we have [30]


F ⋆f ⋆ f... ⋆ f
︸ ︷︷ ︸

i convolutions



 (x) → 0. (A.5)

From (A.4) and (A.5), we have
∞∑

i=0

gi(Q + x− y) =
1

ρ
(1− F (Q + x− y))

+
1

ρ
(F (Q+ x− y)− (F ⋆ f) (Q+ x− y))

+
1

ρ
((F ⋆ f) (Q+x−y)−(F ⋆ f ⋆ f) (Q+x−y))+...

=
1

ρ



1− lim
i→∞



F ⋆f ⋆ f... ⋆ f
︸ ︷︷ ︸

i convolutions



(x)



=
1

ρ
.

(A.6)
Taking (A.6) and (A.1) into the right side of (A.3), we have

g(x+Q) +

Q+x∫

x

(
∞∑

i=0

gi(Q + x− y)

)

f(y)dy

=
1

ρ
(1− F (x +Q)) +

Q+x∫

x

1

ρ
f(y)dy

=
1

ρ
(1− F (x +Q)) +

1

ρ
(F (Q+ x)− (F (x)) =

1

ρ
(1− F (x)) .

(A.7)
Thus,g(x) in (A.2) satisfies Condition 2. Because of

∫∞

0 (1−
F (x)) = E {ξi} [30], Condition 1 is also satisfied, yielding
the desired result.

APPENDIX B: PROOF OFLEMMA 1

For general random energy arrival processes, the proof is
based on Lemma A1 given in Appendix A. First, we find
an arbitrarily smallQ which is a constant such thatESB
and ETB are integer multiples of it. Then, from an energy
perspective, we equivalently treat the proposed communication
protocol with energy harvesting, sensing and transmissionas
a simple harvest-then-use process with EHBs and ECBs (each
consumes energy,Q) as discussed in Lemma A1. Thus, the
energy level after a TB, can be treated equivalently as that after
a corresponding ECB. Therefore, the steady-state distribution
of energy level after each TB is the same as that after each
ECB, which is given in Lemma A1, completing the proof.

APPENDIX C: EVENT AND RANDOM VARIABLE

DEFINITIONS

To assist the proofs of the main results, we useUC to denote
the sequence of time blocks from an arbitrary STB to the next
STB. Also we define two events (according to [30]) and several
discrete random variables (r.v.s) for convenience:

1) Event Λsuc: Given a SB, its generated information is
successfully transmitted to the sink, i.e., STB occurs during
theW blocks after the SB.

2) EventΛfail: Given a SB, its generated information is not
successfully transmitted to the sink, i.e., STB does not
occur during theW blocks after the SB.

3) r.v. N , 1 ≤ N ≤ W : Given a SB, it is followed byN
TBs before the next SB. I.e., ifΛsuc occurs, theN TBs
includesN − 1 FTBs and one STB. While ifΛfail occurs,
all theN TBs are FTBs.
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4) r.v. L, 1 ≤ L ≤ W : After a SB, theLth block is the last
TB before the next SB. I.e., ifΛsuc occurs, theLth block
is a STB, thusL is the update age. While ifΛfail occurs,
theLth block is the last FTB during the time window for
retransmissions,W .

5) r.v. Ṽ , Ṽ ≥ −1: Given a SB, ifΛsuc occurs,Ṽ = −1,
while if an Λfail occurs,Ṽ is the number of the required
EHBs after the time window for retransmissions,W , in
order to harvest the amount of energy,ETB. Note that, after
a Λfail, the amount of energyESB + ETB is required to
be reached in order to support the following SB and TB.
Without loss of generality, here we assume that the energy
harvesting process first meets the energy levelETB, and the
TB consumes the energy,ETB, (V)irtually. From Lemma 1
and its proof, the steady-state distribution of the available
energy level after thẽV EHBs isg(ǫ).

6) r.v. V , V ≥ 0. Given a SB and conditioned on aΛfail

occurs,V is the number of the required EHBs after the
time window for retransmissions,W , in order to harvest
the amount of energy,ETB. From the definition ofV and
Ṽ , it is easy to see that

Pr {V = v}=Pr
{

Ṽ =v|Λfail

}

=
Pr
{

Ṽ =v
}

Pr {Λfail}
, v = 0, 1, ....

(C.1)
7) r.v. E(E), E(E) ≥ 0: Given the distribution of initial

energy level,g(ǫ), and the amount of target energy,E , the
required number of energy harvesting block isE(E).
For a deterministic energy arrival process, straightforwardly
we have

Pr {E(E) = i} = 1, i = E/ρ. (C.2)

For a general random energy arrival process, from the
definition ofE(E), Lemma 1 and its proof, we have

Pr {E(E) = i} = Gi−1(E)−Gi(E), i = 0, 1, 2, ... (C.3)

where

Gi(x) =







1, i = −1,
∫ x

0

gi(u)du, i ≥ 0,
(C.4)

andgi(x) is defined in (A.2).
For exponentialenergy arrival process, we know that the
energy accumulation process during EHBs after a TB is a
Poissonprocess [30], thus, we have

Pr {E(E)= i}=Gi−1(E)−Gi(E)=Pois (i, E/ρ) , i = 0, 1, ...
(C.5)

8) r.v. M , M ≥ 0: Given a UC,Λfail occur M times and
followed by oneΛsuc in it.

From the definitions of event, we know thatΛsuc andΛfail

are mutually exclusive events. Thus, we have

Psuc , Pr {Λsuc} andPr {Λfail} = 1− Psuc, (C.6)

whereΛsuc andΛfail depends on transmit outage probability
in each TB, and the available energy after the first TB
following the SB. Because we have assumed that the success
of each transmission are independent of one another, and from
Lemma 1, the distribution of the available energy after each

TB is the same, each eventΛsuc/Λfail is independent with
each other during the communication process. Therefore, r.v.
M follows the geometric distribution

Pr {M = m} = Psuc (1− Psuc)
m , m = 0, 1, 2, .... (C.7)

APPENDIX D: PMF OF UPDATE AGE

From the definitions in Appendix C, the pdf ofTUA can be
calculated as

Pr {TUA = k} =
Pr {L = k,Λsuc}

Pr {Λsuc}
, k = 1, 2, ...,W. (D.1)

Using the law of total probability and the r.v.s defined in
Appendix C, we have

Pr {L = k,Λsuc} =

k∑

n=1

Pr {L=k,N=n,Λsuc}

=

k∑

n=1

Pr {N=n,E((n− 1)ETB)=k − n,Λsuc}

=

k∑

n=1

Pr {N=n,Λsuc|E((n−1)ETB)=k − n}×

Pr {E((n−1)ETB)=k−n}

=
k∑

n=1

(1 − Pout) (Pout)
n−1 Pr {E((n− 1)ETB) = k − n} .

(D.2)
Again using the law of total probability and using (D.2), (C.6)
becomes

Psuc = Pr {Λsuc} =
W∑

l=1

Pr {L = l,Λsuc}

= Pr {L = 1,Λsuc}+

W∑

l=2

Pr {L = l,Λsuc}

=1−Pout+

W∑

l=2

l∑

n=2

Pr {L = l, N = n,Λsuc}

=1−Pout+

W∑

l=2

l∑

n=2

Pr {E((n−1)ETB)= l−n,N=n,Λsuc}

=1−Pout+

W∑

l=2

l∑

n=2

Pr {N=n,Λsuc|E((n−1)ETB)= l−n}×

Pr {E((n−1)ETB)= l−n}

=1−Pout+

W∑

l=2

l∑

n=2

(1−Pout)(Pout)
n−1

Pr {E((n−1)ETB)= l−n}.

(D.3)
By taking (C.2), (C.3) and (C.5) into (D.2) and (D.3),

and then substituting (D.2) and (D.3) into (D.1), the pmfs of
TUA for deterministic, general random and exponential energy
arrival process are given in Theorems 1, 2 and 3, respectively.

APPENDIX E: PMF OF UPDATE CYCLE

First, assuming thatΛfail occursm times during a UC, we
define r.v.sE0, Vi, Ei, i = 1, 2, ...,m, andL̃. E0 is the number
of EHBs at the beginning of the UC until the first SB occurs
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which follows the same pmf with r.v.E(ESB+ETB). Vi is the
number of EHBs required to harvest the amount of energy,
ETB, outside the time window for retransmissions of theith
Λfail. Ei is the number of EHBs required to harvest the amount
of energy,ESB, following Vi EHBs after theith Λfail. L̃ is
the number of blocks after a SB to the last TB before the
next SB, and the TB is a STB. From the r.v. definitions in
Appendix C,E0, Vi andEi follow the same distribution with
r.v.sE(ESB + ETB), V andE(ESB), respectively, and

Pr
{

L̃ = l
}

= Pr {L = l,Λsuc} , l = 1, 2, ...,W. (E.1)

From Lemma 1,E0, Vi, Ei, i = 1, 2, ...,m, andL̃ are mutually
independent.

Then, the pmf of update cycle can be calculated as

Pr {TUC = k} =
∑

m

Pr {TUC = k,M = m}

=
∑

m

Pr
{

E0+E1+...+Em+Ṽ1+...+Ṽm+m× (1+W )

+L̃+1 = k, Ṽ1, Ṽ2, · · · , Ṽm ≥ 0
}

=
m̂∑

m=0

Pr
{

E0+E1+...+Em+Ṽ1+...+Ṽm+L̃ =

k−m× (1+W )− 1, Ṽ1, Ṽ2, · · · , Ṽm≥0
}

, k = 2, 3, ...,

(E.2)
wherem̂ =

⌊
k−2
W+1

⌋

. For simplicity, we define the following
discrete functions:

ζ(E , i) , Pr {E(E) = i} , i = 0, 1, 2, ...

ι(l) , Pr
{

L̃ = l
}

= Pr {L = l,Λsuc} , l = 1, 2, ...,W

ϑ(v) , Pr
{

Ṽ = v
}

, v = 0, 1, ....

(E.3)
whereζ(E , i) andι(l) are obtained directly from (C.2), (C.3),
(C.5) and (D.2), respectively, andϑ(v) will be derived later.
Therefore, pmf ofTUC in (E.2) can be calculated as

Pr {TUC = k} =

m̂∑

m=0



ζ(ESB + ETB) ∗ζ(ESB) ∗ · · · ∗ ζ(ESB)
︸ ︷︷ ︸

m convolutions

∗ϑ ∗ · · · ∗ ϑ
︸ ︷︷ ︸

m convolutions

∗ι



(k −m(1 +W )− 1).

(E.4)
Now we derive the expression forϑ(i). From the definitions

of r.v. in Appendix C, we have

ϑ(v)=Pr
{

Ṽ =v
}

=Pr
{

Λfail,Ṽ =v
}

=

W∑

n=1

Pr
{

Λfail,Ṽ =v,N = n
}

= Pr
{

Λfail, Ṽ = v,N = 1
}

+

W∑

n=2

Pr
{

Λfail,Ṽ = v,N = n
}

=Pr
{

Λfail, Ṽ =v,N=1
}

+
W∑

l=2

l∑

n=2

Pr
{

Λfail,Ṽ =v,N=n,L= l
}

(E.5)

= Pr {Λfail, N = 1, E(ETB) = W + v − 1}

+

W∑

l=2

l∑

n=2

Pr {Λfail, N=n,E((n−1)ETB)= l−n,E(ETB)=W+v−l}

=Pr {Λfail, N=1|E(ETB)=W+v−1}Pr {E(ETB)=W+v−1}

+

W∑

l=2

l∑

n=2

Pr {Λfail, N=n|E((n−1)ETB)= l−n,E(ETB)=W+v−l}

× Pr {E((n− 1)ETB) = l − n,E(ETB) = W + v − l}

= PoutPr {E(ETB) = W + v − 1}

+
W∑

l=2

l∑

n=2

(Pout)
nPr {E((n−1)ETB)= l−n}Pr {E(ETB)=W+v−l}.

By taking functions (E.5),ζ(E , i) and ι(l) in (E.3), into
(E.4), and letting (C.2) and (C.3) substitutePr {E(E) = i},
the pmf ofTUC for deterministic and general random energy
arrival process can be calculated, respectively, as given in
Theorems 4 and 5. While for the exponential energy arrival
process, by using the sum property of Poisson distribution,we
have

Pr {E(E1)1 + E(E2)2 = i} = Pr {E(E1 + E2) = i} , (E.6)

whereE(E1)1 andE(E2)2 are two independent random vari-
ables which have the same distribution withE(E1) andE(E2)
defined in Appendix C, respectively. Therefore, letting (C.5)
substitutePr {E(E) = i}, the pmf of TUC for exponential
energy arrival process can be further simplified as given in
Theorem 6.

APPENDIX F: AVERAGE UPDATE CYCLE

Based on Appendix E, average update cycle can be calcu-
lated as

T̄UC = E {E {TUC|M}} =

∞∑

m=0

Pr {M = m}E {TUC|M = m}

=

∞∑

m=0

Pr {M = m}E {E0+E1+· · ·+Em+V1+V2+· · ·+Vm

+m× (1+W )+1+TUA}

=

∞∑

m=0

Pr {M = m}
(
E {E0}+E {E1}+· · ·+E {Em}+m× V̄

+m× (W+1)+T̄UA+1
)
.

(F.1)
From Appendix E, we have

E {E0} =
ESB + ETB

ρ
, E {Ei} =

ESB
ρ

, i = 1, 2, ...,m. (F.2)
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After taking (E.5) and (C.6) into (C.1) and some simplifica-
tions, the expectation ofV can be calculated as

V̄ =

∞∑

v=0

v
ϑ(v)

1− Psuc
=

Pout

1− Psuc

(

ETB

ρ
−

W−2∑

i=0

iPr {E(ETB) = i}

−(W−1)

(

1−

W−2∑

i=0

Pr {E(ETB)= i}

))

+
1

1− Psuc

W∑

l=2

l∑

n=2

(Pout)
n
Pr {E((n− 1)ETB) = l − n}×

(

ETB

ρ
−

W−l−1∑

i=0

iPr {E(ETB)= i}−(W−l)

(

1−

W−l−1∑

i=0

Pr {E(ETB)= i}

))

.

(F.3)
By taking (F.2), (F.3) and (C.7) into (F.1), and further

substitutingPsuc and T̄UA given in Corollaries 1, 2 and 3,
average update cycle for deterministic, general random and
exponential energy arrival processes are given in Corollaries 5,
6 and 7, respectively.

APPENDIX G: ASYMPTOTIC LOWER/UPPERBOUNDS

From Corollaries 1 and 2, it is easy to see thatT̄UA increase
with W . While for T̄UC, the monotonicity is not explicitly
observed from Corollary 6. Due to space limitations, a sketch
of the proof is given: WhenW increases, more TBs are
allowed, thus more STBs occurs during the communication
process, which also means shorter average update cycle.

WhenW → ∞, the sensed information in each SB will be
successfully transmitted to the sink, i.e.,Λsuc always occurs
and Psuc → 1. Thus, UC contains the EHBs to harvest the
amount of energy,ESB+ETB, the SB, and the blocks inTUA.
Based on this explanation, for the average update age, we have

lim
W→∞

T̄UA=

∞∑

n=1

Pr {N=n}E {TUA|N = n}

=

∞∑

n=1

(1−Pout) (Pout)
n−1

E {n+ E((n− 1)ETB)}

=
∞∑

n=1

(1 − Pout) (Pout)
n−1

(

n+ (n− 1)
ETB

ρ

)

=1 + (ETB/ρ+ 1)Pout/(1− Pout).

(G.1)

For the average update cycle, we have

lim
W→∞

T̄UC =
∞∑

n=1

Pr {N = n}E {TUC|N = n}

=

∞∑

n=1

(1−Pout)(Pout)
n−1

E {E(ESB+ETB)+1+n+E((n−1)ETB)}

=

∞∑

n=1

(1−Pout) (Pout)
n−1

(

n+1+
ESB + nETB

ρ

)

= 2+(ETB/ρ+1)Pout(1− Pout) + (ESB + ETB)/ρ.
(G.2)
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