22 research outputs found

    Memory-efficient state lookups with fast updates

    Full text link

    system-level modeling of programmable packet processing systems

    Get PDF
    Computer networks are experiencing explosive growth which is reinforced by the recent exhaustion of the global IPv4 addresses space in 2011 and the tenfold increase in users from 1999 to 2013. The advent of cloud, mobile and IoT is only going to accelerate this growth. This accedes the need for flexible and scalable networks that process packets faster. Programmable packet processing systems have emerged as a solution which aim to find balance between flexibility of supporting different processing functions while maintaining a high processing capability. Designing architectures that support such paradigms is fairly complicated as decisions need to be made for evaluating trade-offs between flexibility and efficiency. Questions like what programmatic interfaces, services, applications and protocols are required need to be answered before synthesis of actual hardware. To evaluate such requirements modelling techniques are required to evaluate architecture decisions accurately early enough in the design phase. In this thesis, we propose a flexible system level modelling methodology for early validation, design and analysis of packet processing applications for programmable forwarding plane architectures. The hardware and software architecture is described in a high level language which can be used to describe forwarding planes from many core network processors to reconfigurable processing pipelines. Device architects can use this for design space exploration, prototyping and validation; where application developers can start pre-silicon application design, development and debugging to evaluate different hardware and software decisions in an industry with ever shrinking market windows

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Design and Evaluation of Packet Classification Systems, Doctoral Dissertation, December 2006

    Get PDF
    Although many algorithms and architectures have been proposed, the design of efficient packet classification systems remains a challenging problem. The diversity of filter specifications, the scale of filter sets, and the throughput requirements of high speed networks all contribute to the difficulty. We need to review the algorithms from a high-level point-of-view in order to advance the study. This level of understanding can lead to significant performance improvements. In this dissertation, we evaluate several existing algorithms and present several new algorithms as well. The previous evaluation results for existing algorithms are not convincing because they have not been done in a consistent way. To resolve this issue, an objective evaluation platform needs to be developed. We implement and evaluate several representative algorithms with uniform criteria. The source code and the evaluation results are both published on a web-site to provide the research community a benchmark for impartial and thorough algorithm evaluations. We propose several new algorithms to deal with the different variations of the packet classification problem. They are: (1) the Shape Shifting Trie algorithm for longest prefix matching, used in IP lookups or as a building block for general packet classification algorithms; (2) the Fast Hash Table lookup algorithm used for exact flow match; (3) the longest prefix matching algorithm using hash tables and tries, used in IP lookups or packet classification algorithms;(4) the 2D coarse-grained tuple-space search algorithm with controlled filter expansion, used for two-dimensional packet classification or as a building block for general packet classification algorithms; (5) the Adaptive Binary Cutting algorithm used for general multi-dimensional packet classification. In addition to the algorithmic solutions, we also consider the TCAM hardware solution. In particular, we address the TCAM filter update problem for general packet classification and provide an efficient algorithm. Building upon the previous work, these algorithms significantly improve the performance of packet classification systems and set a solid foundation for further study

    Network Processors and Next Generation Networks: Design, Applications, and Perspectives

    Get PDF
    Network Processors (NPs) are hardware platforms born as appealing solutions for packet processing devices in networking applications. Nowadays, a plethora of solutions exists, with no agreement on a common architecture. Each vendor has proposed its specific solution and no official standard still exists. The common features of all proposals are a hierarchy of processors, with a general purpose processor and several units specialized for packet processing, a series of memory devices with different sizes and latencies, a low-level programmability. The target is a platform for networking applications with low time to market and high time in market, thanks to a high flexibility and a programmability simpler than that of ASICs, for example. After about ten years since the "birth" of network processors, this research activity wants to make an analytical balance of their development and usage. Many authoritative opinions suggest that NPs have been "outdated" by multicore or manycore systems, which provide general purpose environments and some specialized cores. The main reasons of these negative opinions are the hard programmability of NPs, which often requires the knowledge of private microcode, or the excessive architectural limits, such as reduced memories and minimal instruction store. Our research shows that Network Processors can be appealing for different applications in networking area, and many interesting solutions can be obtained, which present very high performance, outscoring current solutions. However, the issues of hard programming and remarkable limits exist, and they could be alleviated only by providing almost a comprehensive programming environment and a proper design in terms of processing and memory resources. More e cient solutions can be surely provided, but the experience of network processors has produced an important legacy in developing packet processing engines. In this work, we have realized many devices for networking purposes based on NP platform, in order to understand the complexity of programming, the flexibility of design, the complexity of tasks that can be implemented, the maximum depth of packet processing, the performance of such devices, the real usefulness of NPs in network devices. All these features have been accurately analyzed and will be illustrated in this thesis. Many remarkable results have been obtained, which confirm the Network Processors as appealing solutions for network devices. Moreover, the research on NPs have lead us to analyze and solve more general issues, related for instance to multiprocessor systems or to processors with no big available memory. In particular, the latter issue lead us to design many interesting data structures for set representation and membership query, which are based on randomized techniques and allow for big memory savings

    Power and Memory Efficient Hashing Schemes for Some Network Applications

    Get PDF
    Hash tables (HTs) are used to implement various lookup schemes and they need to be efficient in terms of speed, space utilization, and power consumptions. For IP lookup, the hashing schemes are attractive due to their deterministic O(1) lookup performance and low power consumptions, in contrast to the TCAM and Trie based approaches. As the size of IP lookup table grows exponentially, scalable lookup performance is highly desirable. For next generation high-speed routers, this is a vital requirement when IP lookup remains in the critical data path and demands a predictable throughput. However, recently proposed hash schemes, like a Bloomier filter HT and a Fast HT (FHT) suffer from a number of flaws, including setup failures, update overheads, duplicate keys, and pointer overheads. In this dissertation, four novel hashing schemes and their architectures are proposed to address the above concerns by using pipelined Bloom filters and a Fingerprint filter which are designed for a memory-efficient approximate match. For IP lookups, two new hash schemes such as a Hierarchically Indexed Hash Table (HIHT) and Fingerprint-based Hash Table (FPHT) are introduced to achieve a a perfect match is assured without pointer overhead. Further, two hash mechanisms are also proposed to provide memory and power efficient lookup for packet processing applications. Among four proposed schemes, the HIHT and the FPHT schemes are evaluated for their performance and compared with TCAM and Trie based IP lookup schemes. Various sizes of IP lookup tables are considered to demonstrate scalability in terms of speed, memory use, and power consumptions. While an FPHT uses less memory than an HIHT, an FPHT-based IP lookup scheme reduces power consumption by a factor of 51 and requires 1.8 times memory compared to TCAM-based and trie-based IP lookup schemes, respectively. In dissertation, a multi-tiered packet classifier has been proposed that saves at most 3.2 times power compared to the existing parallel packet classifier. Intrinsic hashing schemes lack of high throughput, unlike partitioned Ternary Content Addressable Memory (TCAM)-based scheme that are capable of parallel lookups despite large power consumption. A hybrid CAM (HCAM) architecture has been introduced. Simulation results indicate HCAM to achieve the same throughput as contemporary schemes while it uses 2.8 times less memory and 3.6 times less power compared to the contemporary schemes
    corecore