963 research outputs found

    PaaS-IaaS Inter-Layer Adaptation in an Energy-Aware Cloud Environment

    Get PDF
    Cloud computing providers resort to a variety of techniques to improve energy consumption at each level of the cloud computing stack. Most of these techniques consider resource-level energy optimization at IaaS layer. This paper argues energy gains can be obtained by creating a cooperation between the PaaS layer (in charge of hosting the application/service) and the IaaS layer (in charge of handling the computing resources). It presents a novel method based on steering information and decision taking to trigger the PaaS and IaaS layers to adapt their energy mode in service operation, therefore enabling the Cloud stack to actively adapt to changing situations. Experimental results demonstrate such adaptation achieves dynamic energy management in each of the PaaS and IaaS cloud layers

    Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

    Get PDF
    Energy consumption is a key concern in cloud computing. The paper reports on a cloud architecture to support energy efficiency at service construction, deployment, and operation. This is achieved through SaaS, PaaS and IaaS intra-layer self-adaptation in isolation. The self-adaptation mechanisms are discussed, as well as their implementation and evaluation. The experimental results show that the overall architecture is capable of adapting to meet the energy goals of applications on a per layer basis

    Energy efficiency embedded service lifecycle: Towards an energy efficient cloud computing architecture

    Get PDF
    The paper argues the need to provide novel methods and tools to support software developers aiming to optimise energy efficiency and minimise the carbon footprint resulting from designing, developing, deploying and running software in Clouds, while maintaining other quality aspects of software to adequate and agreed levels. A cloud architecture to support energy efficiency at service construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Postprint (published version

    Towards energy aware cloud computing application construction

    Get PDF
    The energy consumption of cloud computing continues to be an area of significant concern as data center growth continues to increase. This paper reports on an energy efficient interoperable cloud architecture realised as a cloud toolbox that focuses on reducing the energy consumption of cloud applications holistically across all deployment models. The architecture supports energy efficiency at service construction, deployment and operation. We discuss our practical experience during implementation of an architectural component, the Virtual Machine Image Constructor (VMIC), required to facilitate construction of energy aware cloud applications. We carry out a performance evaluation of the component on a cloud testbed. The results show the performance of Virtual Machine construction, primarily limited by available I/O, to be adequate for agile, energy aware software development. We conclude that the implementation of the VMIC is feasible, incurs minimal performance overhead comparatively to the time taken by other aspects of the cloud application construction life-cycle, and make recommendations on enhancing its performance

    A Self-adaptive Agent-based System for Cloud Platforms

    Full text link
    Cloud computing is a model for enabling on-demand network access to a shared pool of computing resources, that can be dynamically allocated and released with minimal effort. However, this task can be complex in highly dynamic environments with various resources to allocate for an increasing number of different users requirements. In this work, we propose a Cloud architecture based on a multi-agent system exhibiting a self-adaptive behavior to address the dynamic resource allocation. This self-adaptive system follows a MAPE-K approach to reason and act, according to QoS, Cloud service information, and propagated run-time information, to detect QoS degradation and make better resource allocation decisions. We validate our proposed Cloud architecture by simulation. Results show that it can properly allocate resources to reduce energy consumption, while satisfying the users demanded QoS

    A Review of Energy-aware Cloud Computing Surveys

    Get PDF
    The increasing demands on the usage of data centers especially in provisioning cloud applications (i.e. data-intensive applications) have drastically increased the energy consumption and becoming a critical issue. Failing to handle the increasing in energy consumption leads to the negative impact on the environment, and also negatively affecting the cloud providers’ profits due to increasing costs. Various surveys have been carried out to address and classify energy-aware approaches and solutions. As an active research area with increasing number of proposals, more surveys are needed to support researchers in the research area. Thus, in this paper, we intend to provide the current state of existing related surveys that serve as a guideline for the researchers as well as the potential reviewers to embark into a new concern and dimension to compliment existing related surveys. Our review highlights four main topics and concludes to some recommendations for the future survey

    Review and analysis of networking challenges in cloud computing

    Get PDF
    Cloud Computing offers virtualized computing, storage, and networking resources, over the Internet, to organizations and individual users in a completely dynamic way. These cloud resources are cheaper, easier to manage, and more elastic than sets of local, physical, ones. This encourages customers to outsource their applications and services to the cloud. The migration of both data and applications outside the administrative domain of customers into a shared environment imposes transversal, functional problems across distinct platforms and technologies. This article provides a contemporary discussion of the most relevant functional problems associated with the current evolution of Cloud Computing, mainly from the network perspective. The paper also gives a concise description of Cloud Computing concepts and technologies. It starts with a brief history about cloud computing, tracing its roots. Then, architectural models of cloud services are described, and the most relevant products for Cloud Computing are briefly discussed along with a comprehensive literature review. The paper highlights and analyzes the most pertinent and practical network issues of relevance to the provision of high-assurance cloud services through the Internet, including security. Finally, trends and future research directions are also presented

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Energy-aware cost prediction and pricing of virtual machines in cloud computing environments

    Get PDF
    With the increasing cost of electricity, Cloud providers consider energy consumption as one of the major cost factors to be maintained within their infrastructure. Consequently, various proactive and reactive management mechanisms are used to efficiently manage the cloud resources and reduce the energy consumption and cost. These mechanisms support energy-awareness at the level of Physical Machines (PM) as well as Virtual Machines (VM) to make corrective decisions. This paper introduces a novel Cloud system architecture that facilitates an energy aware and efficient cloud operation methodology and presents a cost prediction framework to estimate the total cost of VMs based on their resource usage and power consumption. The evaluation on a Cloud testbed show that the proposed energy-aware cost prediction framework is capable of predicting the workload, power consumption and estimating total cost of the VMs with good prediction accuracy for various Cloud application workload patterns. Furthermore, a set of energy-based pricing schemes are defined, intending to provide the necessary incentives to create an energy-efficient and economically sustainable ecosystem. Further evaluation results show that the adoption of energy-based pricing by cloud and application providers creates additional economic value to both under different market conditions
    corecore