3 research outputs found

    PRNU-based image classification of origin social network with CNN

    Get PDF
    A huge amount of images are continuously shared on social networks (SNs) daily and, in most of cases, it is very difficult to reliably establish the SN of provenance of an image when it is recovered from a hard disk, a SD card or a smartphone memory. During an investigation, it could be crucial to be able to distinguish images coming directly from a photo-camera with respect to those downloaded from a social network and possibly, in this last circumstance, determining which is the SN among a defined group. It is well known that each SN leaves peculiar traces on each content during the upload-download process; such traces can be exploited to make image classification. In this work, the idea is to use the PRNU, embedded in every acquired images, as the “carrier” of the particular SN traces which diversely modulate the PRNU. We demonstrate, in this paper, that SN-modulated noise residual can be adopted as a feature to detect the social network of origin by means of a trained convolutional neural network (CNN)

    CNN-based fast source device identification

    Full text link
    Source identification is an important topic in image forensics, since it allows to trace back the origin of an image. This represents a precious information to claim intellectual property but also to reveal the authors of illicit materials. In this paper we address the problem of device identification based on sensor noise and propose a fast and accurate solution using convolutional neural networks (CNNs). Specifically, we propose a 2-channel-based CNN that learns a way of comparing camera fingerprint and image noise at patch level. The proposed solution turns out to be much faster than the conventional approach and to ensure an increased accuracy. This makes the approach particularly suitable in scenarios where large databases of images are analyzed, like over social networks. In this vein, since images uploaded on social media usually undergo at least two compression stages, we include investigations on double JPEG compressed images, always reporting higher accuracy than standard approaches

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    corecore