44,250 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Basic Polyhedral Theory

    Full text link
    This is a chapter (planned to appear in Wiley's upcoming Encyclopedia of Operations Research and Management Science) describing parts of the theory of convex polyhedra that are particularly important for optimization. The topics include polyhedral and finitely generated cones, the Weyl-Minkowski Theorem, faces of polyhedra, projections of polyhedra, integral polyhedra, total dual integrality, and total unimodularity.Comment: 14 page

    Minimal Bending Energies of Bilayer Polyhedra

    Get PDF
    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra

    Triangular hyperbolic buildings

    Get PDF
    We construct triangular hyperbolic polyhedra whose links are generalized 4-gons. The universal cover of those polyhedra are hyperbolic buildings, which appartments are hyperbolic planes tesselated by regular triangles with angles π/4\pi/4. Moreover, the fundamental groups of the polyhedra acts simply transitively on vertices of the buildings
    • …
    corecore