11 research outputs found

    Conformally Mapped Polynomial Chaos Expansions for Maxwell's Source Problem with Random Input Data

    Full text link
    Generalized Polynomial Chaos (gPC) expansions are well established for forward uncertainty propagation in many application areas. Although the associated computational effort may be reduced in comparison to Monte Carlo techniques, for instance, further convergence acceleration may be important to tackle problems with high parametric sensitivities. In this work, we propose the use of conformal maps to construct a transformed gPC basis, in order to enhance the convergence order. The proposed basis still features orthogonality properties and hence, facilitates the computation of many statistical properties such as sensitivities and moments. The corresponding surrogate models are computed by pseudo-spectral projection using mapped quadrature rules, which leads to an improved cost accuracy ratio. We apply the methodology to Maxwell's source problem with random input data. In particular, numerical results for a parametric finite element model of an optical grating coupler are given

    Low-dimensional offshore wave input for extreme event quantification

    Full text link
    In offshore engineering design, nonlinear wave models are often used to propagate stochastic waves from an input boundary to the location of an offshore structure. Each wave realization is typically characterized by a high-dimensional input time series, and a reliable determination of the extreme events is associated with substantial computational effort. As the sea depth decreases, extreme events become more difficult to evaluate. We here construct a low-dimensional characterization of the candidate input time series to circumvent the search for extreme wave events in a high-dimensional input probability space. Each wave input is represented by a unique low-dimensional set of parameters for which standard surrogate approximations, such as Gaussian processes, can estimate the short-term exceedance probability efficiently and accurately. We demonstrate the advantages of the new approach with a simple shallow-water wave model based on the Korteweg-de Vries equation for which we can provide an accurate reference solution based on the simple Monte Carlo method. We furthermore apply the method to a fully nonlinear wave model for wave propagation over a sloping seabed. The results demonstrate that the Gaussian process can learn accurately the tail of the heavy-tailed distribution of the maximum wave crest elevation based on only 1.7%1.7\% of the required Monte Carlo evaluations

    Conformally mapped polynomial chaos expansions for Maxwell's source problem with random input data

    Get PDF
    Generalized Polynomial Chaos (gPC) expansions are well established for forward uncertainty propagation in many application areas. Although the associated computational effort may be reduced in comparison to Monte Carlo techniques, for instance, further convergence acceleration may be important to tackle problems with high parametric sensitivities. In this work, we propose the use of conformal maps to construct a transformed gPC basis, in order to enhance the convergence order. The proposed basis still features orthogonality properties and hence, facilitates the computation of many statistical quantities such as sensitivities and moments. The corresponding surrogate models are computed by pseudo‐spectral projection using mapped quadrature rules, which leads to an improved cost accuracy ratio. We apply the methodology to Maxwell's source problem with random input data. In particular, numerical results for a parametric finite element model of an optical grating coupler are given

    Influence of Spatially Distributed Out-of-Plane CFRP Fiber Waviness on the Estimation of Knock-Down Factors Based on Stochastic Numerical Analysis

    Get PDF
    The presence of waviness defects in CFRP materials due to fiber undulation affects the structural performance of composite structures. Hence, without a reliable assessment of the resulting material properties, the full weight-saving potential cannot be exploited. Within the paper, a probabilistic numerical approach for improved estimation of material properties based on spatially distributed fiber waviness is presented. It makes use of a homogenization approach to derive viable knock-down factors for the different plies on the laminate level for reference material and is demonstrated for a representative tension loadcase. For the stochastic analysis, a random field is selected which describes the complex inner geometry of the plies in the laminate model and is numerically discretized by the Karhunen–Loeve expansion methods to fit into an FE model for the strength analysis. Conducted analysis studies reveal a substantial influence of randomly distributed waviness defects on the derived knock-down factors. Based on a topological analysis of the waviness fields, the reduction of the material properties was found to be weakly negatively correlated related to simple geometrical properties such as maximum amplitudes of the waviness field, which justifies the need for further subsequent sensitivity studies

    rLSTM-AE for dimension reduction and its application to active learning-based dynamic reliability analysis

    Get PDF
    A novel method termed rLSTM-AE is developed for the low-dimensional latent space identification of the stochastic dynamic systems with more than 1000 input random variables and the active learning-based dynamic reliability analysis. First, the long short-term memory network considers both the time-variant stochastic excitation and the time-invariant random variables is developed (rLSTM), which adopts the time-series excitation as the pertinent input feature and makes it available for the metamodeling of the high-dimensional stochastic dynamic systems. To circumvent the insufficient accuracy of deep neural networks for reliability analysis results from the limited observations, autoencoder (AE) is incorporated with the rLSTM (rLSTM-AE) and utilized to decompose the approximate extreme value space found by rLSTM onto a low-dimensional latent space. The dimension of the latent space is adaptively determined by a Gaussian process regression reconstruction error, which enables the Gaussian process regression with the similar accuracy as rLSTM regarding the extreme responses prediction. The proposed rLSTM-AE conducts the low-dimensional features extraction from the perspective of the output space decomposition and considers the time-dependent property of the dynamic systems. Finally, the detected latent variables can be combined with the active learning-based Gaussian process regression for the high-dimensional dynamic reliability analysis. One single-degree-of-freedom system and a reinforced concrete frame structure subjected to the stochastic excitation are investigated to validate the performance of the proposed method
    corecore