586 research outputs found

    Design and layout strategies for integrated frequency synthesizers with high spectral purity

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Design guidelines for fractional-N phase-locked loops with a high spectral purity of the output signal are presented. Various causes for phase noise and spurious tones (spurs) in integer-N and fractional-N phase-locked loops (PLLs) are briefly described. These mechanisms include device noise, quantization noise folding, and noise coupling from charge pump (CP) and reference input buffer to the voltage-controlled oscillator (VCO) and vice versa through substrate and bondwires. Remedies are derived to mitigate the problems by using proper PLL parameters and a careful chip layout. They include a large CP current, sufficiently large transistors in the reference input buffer, linearization of the phase detector, a high speed of the programmable frequency divider, and minimization of the cross-coupling between the VCO and the other building blocks. Examples are given based on experimental PLLs in SiGe BiCMOS technologies for space communication and wireless base stations.BMBF, 03ZZ0512A, Zwanzig20 - Verbundvorhaben: fast-spot; TP1: Modularer Basisband- Prozessor mit extrem hohen Datenraten, sehr kurzen Latenzzeiten und SiGe-Analog-Frontend-IC-Fertigung bei >200 GHz TrÀgerfrequen

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz

    Architectures for RF Frequency synthesizers

    Get PDF
    Frequency synthesizers are an essential building block of RF communication products. They can be found in traditional consumer products, in personal communication systems, and in optical communication equipment. Since frequency synthesizers are used in many different applications, different performance aspects may need to be considered in each case. The main body of the text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. The analysis of the PLL properties is performed with the use of the open-loop bandwidth and phase margin concepts, to enable the influence of higher-order poles to be taken into account from the beginning of the design process. The theoretical system analysis is complemented by descriptions of innovative system and building block architectures, by circuit implementations in bipolar and CMOS technologies, and by measurement results. Architectures for RF Frequency Synthesizers contains basic information for the beginner as well as in-depth knowledge for the experienced designer. It is widely illustrated with practical design examples used in industrial products.\ud Written for:\ud Electrical and electronic engineer

    A design methodology to enable sampling PLLs to synthesise fractional-N frequencies

    Get PDF
    A novel design methodology is proposed to enable sampling phase-locked loops (SPLL) to synthesise fractional-N frequencies. To date, SPLL can only generate integer-N frequencies. The benefit is that the proposed SPLL has the advantages of both fractional-N phase-locked loop (FN-PLL) and SPLL, such as the faster frequency switching, a smaller phase jump and a larger loop gain. Since the frequency divider can be omitted in SPLL, the associated phase noise, power and hardware consumption can be ignored. Also, the design work is simplified, since the complex multi-phase frequency divider is not needed in the proposed fractional-N sampling phase-locked loop (FN-SPLL)

    A Novel Three-Point Modulation Technique for Fractional-N Frequency Synthesizer Applications

    Get PDF
    This paper presents a novel three-point modulation technique for fractional-N frequency synthesizer applications. Convention modulated fractional-N frequency synthesizers suffer from quantization noise, which degrades not only the phase noise performance but also the modulation quality. To solve this problem, this work proposes a three-point modulation technique, which not only cancels the quantization noise, but also markedly boosts the channel switching speed. Measurements reveal that the implemented 2.4 GHz fractional-N frequency synthesizer using three-point modulation can achieve a 2.5 Mbps GFSK data rate with an FSK error rate of only 1.4 %. The phase noise is approximately -98 dBc/Hz at a frequency offset of 100 kHz. The channel switching time is only 1.1 ÎŒs with a frequency step of 80 MHz. Comparing with conventional two-point modulation, the proposed three-point modulation greatly improves the FSK error rate, phase noise and channel switching time by about 10 %, 30 dB and 126 ÎŒs, respectively

    High-speed nested cascaded MASH Digital Delta-Sigma Modulator-based divider controller

    Get PDF
    The MASH Digital Delta-Sigma Modulator (DDSM) based divider controller represents a speed bottleneck in state of the art commercial PLL-based fractional-N frequency synthesizers. As next generation systems require higher phase detector frequencies, there is a need to make ever faster divider controllers. This paper describes a fine-grained nested cascaded MASH DDSM which is significantly faster than state of the art divider controllers, thereby eliminating the current speed bottleneck

    Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb

    Full text link
    This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves
    • 

    corecore