1,583 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Multi-objective optimization of active suspension predictive control based on improved PSO algorithm

    Get PDF
    The design and control for active suspension is of great significance for improving the vehicle performance, which requires considering simultaneously three indexes including ride comfort, packaging requirements and road adaptability. To find optimal suspension parameters and provide a better tradeoff among these three performances, this paper presents a novel multi-objective particle swarm optimization (MPSO) algorithm for the suspension design. The mathematical model of quarter-car suspension is first established, and it integrates the hydraulic servo actuator model. Further a model predictive controller is designed for the suspension by using the control strategies of multi-step forecast, rolling optimization and online correction of predictive control theory. To use vehicle body acceleration, tire deflection and suspension stroke to represent the above three performances respectively, a multi-objective optimization model is constructed to optimize the suspension stiffness and damping coefficients. The MPSO algorithm includes extra crossover operations, which are applied to find the Pareto optimal set. The rule to update the Pareto pool is that the newly selected solutions must have two better performances compared with at least one already existed in the Pareto pool, which ensures that each solution is non-dominated within the Pareto set. Finally, numerical simulations on a vehicle-type example are done under B-level road surface excitation. Simulation results show that the optimized suspension can effectively reduce the vertical vibrations and improve the road adaptability. The model predictive controller also shows high robustness with vehicle under null load, half load and full load. Therefore, the proposed MPSO algorithm provides a new valuable reference for the multi-objective optimization of active suspension control

    Modeling, Control, and Optimization for Diesel-Driven Generator Sets

    Get PDF

    Modern Optimization Techniques for PID Parameters of Electrohydraulic Servo Control System

    Get PDF
    Electrohydraulic servo system has been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In order to in-crease the reliability, controllability and utilizing the superior speed of response achievable from electrohydraulic systems, further research is required to develop a control software has the ability of overcoming the problems of system nonlinearities. In This paper, a Proportional Integral Derivative (PID) controller is designed and attached to electrohydraulic servo actuator system to control its stability. The PID parameters are optimized by using four techniques: Particle Swarm Optimization (PSO), Bacteria Foraging Algorithm (BFA), Genetic Algorithm (GA), and Ant colony optimization (ACO). The simulation results show that the steady-state error of system is eliminated; the rapidity is enhanced by PSO applied on Proportional Integral Derivative (PPID), Bacteria Foraging Algorithm applied on Proportional Integral Derivative (BPID), GA applied on Proportional Integral Derivative (GPID), and ACO Algorithm applied on Proportional Integral Derivative (ACO-PID) controllers when the system parameter variation was happened, and has good performances using in real applications. A comparative study between used modern optimization techniques are described in the paper and the tradeoff between them

    Research on force control system of lead cathode leveler

    Get PDF
    The flatness of the lead cathode plate affects the electrolytic efficiency of lead and the production efficiency of the whole lead electrolytic industry. However, the dynamic response of the force control system of the leveler is slow, and the anti-interference and robustness are poor. By comparing proportion integration differentiation (PID) control and feedback linearized synovial control two control strategies, MATLAB software was used for modeling and simulation analysis. The results show that the system with feedback linearized sliding mode control has faster response, higher precision and better robustness

    Research on force control system of lead cathode leveler

    Get PDF
    The flatness of the lead cathode plate affects the electrolytic efficiency of lead and the production efficiency of the whole lead electrolytic industry. However, the dynamic response of the force control system of the leveler is slow, and the anti-interference and robustness are poor. By comparing proportion integration differentiation (PID) control and feedback linearized synovial control two control strategies, MATLAB software was used for modeling and simulation analysis. The results show that the system with feedback linearized sliding mode control has faster response, higher precision and better robustness

    PHYSICS-BASED MODELING AND CONTROL OF POWERTRAIN SYSTEMS INTEGRATED WITH LOW TEMPERATURE COMBUSTION ENGINES

    Get PDF
    Low Temperature Combustion (LTC) holds promise for high thermal efficiency and low Nitrogen Oxides (NOx) and Particulate Matter (PM) exhaust emissions. Fast and robust control of different engine variables is a major challenge for real-time model-based control of LTC. This thesis concentrates on control of powertrain systems that are integrated with a specific type of LTC engines called Homogenous Charge Compression Ignition (HCCI). In this thesis, accurate mean value and dynamic cycleto- cycle Control Oriented Models (COMs) are developed to capture the dynamics of HCCI engine operation. The COMs are experimentally validated for a wide range of HCCI steady-state and transient operating conditions. The developed COMs can predict engine variables including combustion phasing, engine load and exhaust gas temperature with low computational requirements for multi-input multi-output realtime HCCI controller design. Different types of model-based controllers are then developed and implemented on a detailed experimentally validated physical HCCI engine model. Control of engine output and tailpipe emissions are conducted using two methodologies: i) an optimal algorithm based on a novel engine performance index to minimize engine-out emissions and exhaust aftertreatment efficiency, and ii) grey-box modeling technique in combination with optimization methods to minimize engine emissions. In addition, grey-box models are experimentally validated and their prediction accuracy is compared with that from black-box only or clear-box only models. A detailed powertrain model is developed for a parallel Hybrid Electric Vehicle (HEV) integrated with an HCCI engine. The HEV model includes sub-models for different HEV components including Electric-machine (E-machine), battery, transmission system, and Longitudinal Vehicle Dynamics (LVD). The HCCI map model is obtained based on extensive experimental engine dynamometer testing. The LTC-HEV model is used to investigate the potential fuel consumption benefits archived by combining two technologies including LTC and electrification. An optimal control strategy including Model Predictive Control (MPC) is used for energy management control in the studied parallel LTC-HEV. The developed HEV model is then modified by replacing a detailed dynamic engine model and a dynamic clutch model to investigate effects of powertrain dynamics on the HEV energy consumption. The dynamics include engine fuel flow dynamics, engine air flow dynamics, engine rotational dynamics, and clutch dynamics. An enhanced MPC strategy for HEV torque split control is developed by incorporating the effects of the studied engine dynamics to save more energy compared to the commonly used map-based control strategies where the effects of powertrain dynamics are ignored. LTC is promising for reduction in fuel consumption and emission production however sophisticated multi variable engine controllers are required to realize application of LTC engines. This thesis centers on development of model-based controllers for powertrain systems with LTC engines

    Model-Based Control Design of an EHA Position Control Based on Multicriteria Optimization

    Get PDF
    For the control of dynamic systems such as an Electro-Hydraulic Actuator (EHA), there is a need to optimize the control based on simulations, since a prototype or a physical system is usually not available during system design. In consequence, no system identification can be performed. Therefore, it is unclear how well a simulation model of an EHA can be used for multicriteria optimization of the position control due to the uncertain model quality. To evaluate the suitability for control optimization, the EHA is modeled and parameterized as a grey-box model using existing parameters independent of test bench experiments. A method for multi-objective optimization of a controller is used to optimize the position control of the EHA. Finally, the step responses are compared with the test bench. The evaluation of the step responses for different loads and control parameters shows similar behavior between the simulation model and the physical system on the test bench, although the essential phenomena could not be reproduced. This means that the model quality achieved by modeling is suitable as an indication for the optimization of the control by simulation without a physical system
    corecore