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Abstract—Electrohydraulic servo system has been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also 

have large extent of model uncertainties and external disturbances. In order to in-crease the reliability, controllability and utilizing the superior 

speed of response achievable from electrohydraulic systems, further research is required to develop a control software has the ability of 

overcoming the problems of system nonlinearities. In This paper, a Proportional Integral Derivative (PID) controller is designed and attached to 

electrohydraulic servo actuator system to control its stability. The PID parameters are optimized by using four techniques: Particle Swarm 

Optimization (PSO), Bacteria Foraging Algorithm (BFA), Genetic Algorithm (GA), and Ant colony optimization (ACO). The simulation results 

show that the steady-state error of system is eliminated; the rapidity is enhanced by PSO applied on Proportional Integral Derivative (PPID), 

Bacteria Foraging Algorithm applied on Proportional Integral Derivative (BPID), GA applied on Proportional Integral Derivative (GPID), and 

ACO Algorithm applied on Proportional Integral Derivative (ACO-PID) controllers when the system parameter variation was happened, and has 

good performances using in real applications. A comparative study between used modern optimization techniques are described in the paper and 

the tradeoff between them. 
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I. INTRODUCTION 

Electrohydraulic servo-systems are widely used in many 

industrial applications because of their high power-to- weight 

ratio, high stiffness, and high payload capability, and at the 

same time, achieve fast responses and high degree of both 

accuracy and performance [1, 2]. However, the dynamic 

behavior of these systems is highly nonlinear due to 

phenomena such as nonlinear servo-valve flow-pressure 

characteristics, variations in trapped fluid volumes and 

associated stiffness, which, in turn, cause difficulties in the 

control of such systems.  

Control techniques used to compensate the nonlinear behavior 

of hydraulic systems include adaptive control, sliding mode 

control and feedback linearization. Adaptive control 

techniques have been proposed by researchers assuming 

linearized system models. These controllers have the ability to 

cope with small changes in system parameters such as valve 

flow coefficients, the fluid bulk modulus, and variable loading. 

However, there is no guarantee that the linear adaptive 

controllers will remain globally stable in the presence of large 

changes in the system parameters, as was demonstrated 

experimentally by Bobrow and Lum [3]. These controllers are 

robust to large parameter variations, but the nearly 

discontinuous control signal excites unmolded system 

dynamics and degrades system performance. This can be 

reduced by smoothing the control discontinuity in a small 

boundary layer bordering the sliding manifold as introduced in 

simulations [4, 5]. The nonlinear nature of the system behavior 

resulting from valve flow characteristics and actuator 

nonlinearities has been taken into account in application of the 

feedback linearization technique [6]. The main drawback of 

the resulting linearizable control law is that it relies on exact 

cancellation of the nonlinear terms.  

In nowadays industry field, the PID control that has the 

characters of simple arithmetic, small static error, good 

dynamic and steady performance, is widely used. But there are 

some control objects with non-linearity, time lags, strong 

coupling and high-order in modern industry. For these 

systems, traditional PID control can‟t provide content efforts. 

[1]  

Over the past a few years, many different techniques have 

been developed to acquire the optimum control parameters for 

PID controllers. The academic control community has 

developed many new techniques for tuning PID controllers 

such as Genetic Algorithm (GA), Ant Colony Optimization 

(ACO), Bacteria Foraging Algorithm (BFA) and Particle 

Swarm Optimization (PSO). A BFA is one such direct search 

optimization techniques which are based on the mechanics of 

natural bacteria and A PSO is one such direct search 

optimization techniques which are based on the behaviour of a 

colony or a swarm of insects, such as ants, termites, bees and 

wasps. [2] 

Advantages of the GA, ACO, BFA and PSO for auto tuning 

are that they do not need gradient information and therefore 

can operate to minimize naturally defined cost functions 

without complex mathematical operations. [3][4] 

This paper describes the application of GA, ACO, BFA 

and PSO techniques based on the transfer function was 

determined in [5] to optimal tuning the three terms of the 

classical PID controller to Electrohydraulic Servo Control 

System. 

II. SYSTEM STATE SPACE DYNAMIC MODEL 

The mathematical model can be deduced based on 

hydraulic control theory which can provide evidence for model 

identification. In this paper, the mathematical model of each 
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part in the system and the simplified mathematical model of the 

system are given directly. 

1) Servo Magnifying: This link can be simplified into 

proportional component, the gain is K, 

2) The Electro-hydraulic Servo Valve: The transfer function 

is represented by oscillational element, that is. 

 

 

 

 

 

Where, Gv  is the transfer function, Q0 is the unloading flow, ΔI 
is the increment of input current, Gv is the flow gain of the 

electro-hydraulic servo valve, ωv  is the nature frequency, εv  is 

the damping ratio, dimensionless. 

3) The symmetrical Hydraulic Cylinder: The transfer 

function of hydraulic cylinder xp  relative to the hydraulic 

cylinder xv  

 

 

 

 

 

Where, Kp  is the flow gain, ωh  is the hydraulic natural 

frequency, εh  is the damping ratio 

4) The Position Sensor: The place of the feedback can be 

represented by the K proportional component f 

5) Simplified Transfer Function of the System: The simplified 

mathematical model can be obtained by the mechanism 

analysis of electro-hydraulic servo system mathematical model: 

 

 

 

The simplified mathematical model controlled by the 

electrohydraulic position servo control system can be seen as a 

fifth order system. The different models obtained by on-line 

identification can be compared with the identification toolbox 

in MATLAB. Choose the best mode as the identification 

model. After on-line identification and proper correction of the 

model gain, the closed-loop transfer function of the 

identification model is that 

 

 

The model obtained by identification is a closed loop model of 

cylinder controlled by the servo valve. After analysis, the open 

loop transfer function of position servo system is: [5] 

 

III. PID CONTROLLER TUNING 

The popularity of PID controllers in industry stems from 

their applicability and due to their functional simplicity and 

reliability performance in a wide variety of operating scenarios. 

Moreover, there is a wide conceptual understanding of the 

effect of the three terms involved amongst non-specialist plant 

operators. In general, the synthesis of PID can be described by, 

u t = Kp e t + Ki  e t dt
t

0

+ Kd

de(t)

dt
                 (6) 

 

Where e(t) is the error, u(t) the controller output, and KP, 

KI, and KD are the proportional, Integral and derivative gains.  

There is a wealth of literature on PID tuning for scalar 

systems, [5-7]. Good reviews of tuning PID methods are given 

in Tan et al. [8] and Cominos and Munro [9]. Among these 

methods are the well-known Ziegler and Nichols [10], Cohen 

and Coon [11]. Many researchers have attempted to use 

advanced control techniques such as optimal control to restrict 

the structure of these controllers to PID type.  

For instance, in some systems with fast output, this method 

can‟t get perfect result or realize the real-time and automatic 

control, so some other controller is needed in these fields. The 

effect of PID controller is showed in Figure 1. [5] 

 

 
Figure 1. Control effect of PID controller 

 

 

IV. Bacterial Foraging Algorithm (BFA) 

 

Recently, bacterial foraging algorithm (BFA) has emerged 

as a powerful technique for the solving optimization problems. 

BFA mimics the foraging strategy of E. coli bacteria which try 

to maximize the energy intake per unit time. From the very 

early days it has drawn attention of researchers due to its 

effectiveness in the optimization domain. So as to improve its 

performance, a large number of modifications have already 

been undertaken. The bacterial foraging system consists of four 

principal mechanisms, namely chemotaxis, swarming, 

reproduction and elimination-dispersal. A brief description of 

each of these processes along with the pseudo-code of the 

complete algorithm is described below. 

 

Chemotaxis: This process simulates the movement of an 

E.coli cell through swimming and tumbling via flagella. 

Biologically an E.coli bacterium can move in two different 

ways. It can swim for a period of time in the same direction or 

it may tumble, and alternate between these two modes of 

operation for the entire lifetime. Suppose θ
i(j, k, l) represents 

ith bacterium at jth chemotactic, kth reproductive and lth 

elimination-dispersal step. C(i) is the size of the step taken in 

the random direction specified by the tumble (run length unit). 

Then in computational chemotaxis the movement of the 

bacterium may be represented by.  

 

 

𝐺𝑣 𝑠 =
𝑄0

∆𝐼
=

𝐾𝑣

𝑠2/𝜔𝑣
2 + 2𝛾𝑣𝑠/𝜔𝑣 + 1

 
(1)  

𝐺0 𝑠 =
𝐾𝑞/𝐴𝑝

𝑠(𝑠2/𝜔ℎ
2 + 2𝛾ℎ𝑠/𝜔ℎ + 1)

 (2)  

𝐺0 𝑠 =
𝐾

𝑠(𝑠2/𝜔ℎ
2 + 2𝛾ℎ𝑠/𝜔ℎ + 1)(𝑠2/𝜔𝑣

2 + 2𝛾𝑣𝑠/𝜔𝑣 + 1)
 (3)  

𝜃𝑗  𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗, 𝑘, 𝑙 + 𝑐(𝑖)
∆(𝑖)

 ∆𝑡(𝑖)∆(𝑖)
 

(7)  

𝐺 𝑠 =
0.0062𝑠2 − 4.07𝑠 + 2925

𝑠3 + 9.43𝑠2 + 13.11𝑠
 (5)  

𝜑 𝑠 =
0.0062𝑠2 − 4.07𝑠 + 2925

𝑠3 + 9.43𝑠2 + 13.68𝑠 + 2925
 (4)  
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Where Δ indicates a vector in the random direction whose 

elements lie in [-1, 1]. 

 

Swarming: An interesting group behavior has been 

observed where a group of E.coli cells arrange themselves in a 

traveling ring by moving up the nutrient gradient when placed 

amidst a semisolid matrix with a single nutrient chemoeffecter. 

The cells, when stimulated by a high level of succinate, release 

an attractant aspertate, which helps them to aggregate into 

groups and thus move as concentric patterns of swarms with 

high bacterial density. The cell-to-cell signaling in E. coli 

swarm may be represented by the following function. 

 

 

 

 

 

𝐽𝑐𝑐

=   −𝑑𝑎𝑡𝑡𝑟𝑎𝑐 tan 𝑡𝑒
(−𝑤

𝑎𝑡𝑡𝑟𝑎𝑐 tan 𝑡  (𝜃𝑚 −𝑃
𝑚 =1 𝜃𝑚

𝑖)2
 

𝑆

𝑖=1

+   −ℎ𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑒
(−𝑤

𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡   (𝜃𝑚 −𝑃
𝑚 =1 𝜃𝑚

𝑖)2
 

𝑆

𝑖=1

 

 

 

where Jcc (θ, P j, k, l  is the objective function value to be 

added to the actual objective function (to be minimized) to 

present a time varying objective function, S is the total number 

of bacteria, p is the number of variables to be optimized, which 

are present in each bacterium and θ = [θ1, θ2, … , θp  is a point 

in the p dimensional search domain. 

Reproduction: The least healthy bacteria eventually die 

while each of the healthier bacteria (those yielding lower value 

of the objective function) asexually split into two bacteria, 

which are then placed in the same location. This keeps the 

swarm size constant. 

Elimination and Dispersal: Gradual or sudden changes in 

the local environment where a bacterium population lives may 

occur due to various reasons e.g. a significant local rise of 

temperature may kill a group of bacteria that are currently in a 

region with a high concentration of nutrient gradients. Events 

can take place in such a fashion that all the bacteria in a region 

are killed or a group is dispersed into a new location. 

Size of population ‘S’: Increasing S can significantly 

increase the computational complexity of the algorithm. 

However, for larger values of S, it is more likely at least some 

bacteria near an optimum point should be started, and over 

time, it is then more likely that many bacterium will be in that 

region, due to either chemotaxis or reproduction. 

Length of chemotactic step ‘C(i)’: If C(i) are too large, 

then if the optimum value lies in a valley with steep edges, the 

search will tend to jump out of the valley, or it may simply 

miss possible local minima by swimming through them without 

stopping. On the other hand, if C(i) are too small, convergence 

can be slow, but if the search finds a local minimum it will 

typically not deviate too far from it. c(i) is a sort of a “step 

size” for the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemotactic step ‘Nc’: If the size of Nc is chosen to be 

too short, the algorithm will generally rely more on luck and 

reproduction, and in some cases, it could more easily get 

𝐽𝑐𝑐 (𝜃, 𝑃 𝑗, 𝑘, 𝑙 =  𝐽𝑐𝑐 (𝜃, 𝜃𝑖 𝑗, 𝑘, 𝑙 

𝑆

𝑖=1

 (8) 
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No 
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bacterium as J(B,K). Where B is Bacterium number 
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Figure 2: BFA flow chart 
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trapped in a local minimum (premature convergence). Ns 

creates a bias in the random walk (which would not occur if Ns 

= 0), with large values tending to bias the walk more in the 

direction of climbing down the hill. 

Reproduction number ‘Nre’: If Nre is too small, the 

algorithm may converge prematurely; however, larger values of 

Nre clearly increase computational complexity. 

Elimination and dispersal number ‘Ned’: A low value 

for Ned dictates that the algorithm will not rely on random 

elimination-dispersal events to try to find favorable regions. A 

high value increases computational complexity but allows the 

bacteria to look in more regions to find good nutrient 

concentrations. Clearly, if ped is large, the algorithm can 

degrade to random exhaustive search. If, however, it is chosen 

appropriately, it can help the algorithm jump out of local 

optima and into a global optimum. 

Parameters defining cell-to-cell attractant functions 

‘Jcc’: If the attractant width is high and very deep, the cells 

will have a strong tendency to swarm (they may even avoid 

going after nutrients and favor swarming). On the other hand, if 

the attractant width is small and the depth shallow, there will be 

little tendency to swarm and each cell will search on its own. 

Social versus independent foraging is then dictated by the 

balance between the strengths of the cell-to-cell attractant 

signals and nutrient concentrations. [12] 

 

BPID CONTROLLER: the specification of the designed 

BFA technique is shown in Table1. 

 
TABLE 1. SPECIFICATION OF THE BFA 

The number of bacteria 10                       

Number of chemotactic steps 5                      

Limits the length of a swim 4                     

The number of reproduction steps 4                       

The number of elimination dispersal events 2                        

 

 
Figure 3: Block diagram of BPID to the Electro system 

 

V. OVERVIEW PARTICLE SWARM OPTIMIZATION 

PSO is a population based optimization method first 

proposed by Eberhart and Colleagues [13-15]. Some of the 

attractive features of PSO include the ease of implementation 

and the fact that no gradient information is required. It can be 

used to solve a wide array of different optimization problems. 

Like evolutionary algorithms, PSO technique conducts search 

using a population of particles, corresponding to individuals. 

Each particle represents a candidate solution to the problem at 

hand. In a PSO system, particles change their positions by 

flying around in a multidimensional search space until 

computational limitations are exceeded. Concept of 

modification of a searching point by PSO is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 

Figure 4: Concept of modification of a searching point by PSO 

 
Where:  

N = Number of particles in the group,       d = dimension, 

t  = Pointer of iterations (generations),      

Vi,m
(t)=Velocity of particle I at iteration t, 

w = Inertia weight factor,c1,c2 = Acceleration constant,  

rand() Random number between 0 and 1. 

Xi,m
 t  = Current position of particle i at iterations,  

Pbesti = Best previous position of the ith particle, 

gbest = Best particle among all the particles in the population. 
 

The PSO technique is an evolutionary computation 

technique, but it differs from other well-known evolutionary 

computation algorithms such as the genetic algorithms. 

Although a population is used for searching the search space, 

there are no operators inspired by the human DNA procedures 

applied on the population. Instead, in PSO, the population 

dynamics simulates a „bird flock‟s‟ behaviour, where social 

sharing of information takes place and individuals can profit 

from the discoveries and previous experience of all the other 

companions during the search for food. Thus, each companion, 

called particle, in the population, which is called swarm, is 

assumed to „fly‟ over the search space in order to find 

promising regions of the landscape. For example, in the 

minimization case, such regions possess lower function values 

than other, visited previously. In this context, each particle is 

treated as a point in a d-dimensional space, which adjusts its 

own „flying‟ according to its flying experience as well as the 

flying experience of other particles (companions). In PSO, a 

particle is defined as a moving point in hyperspace. For each 

particle, at the current time step, a record is kept of the position, 

velocity, and the best position found in the search space so far. 

The assumption is a basic concept of PSO [12]. In the 

PSO algorithm, instead of using evolutionary operators such as 

mutation and crossover, to manipulate algorithms, for a 

variable optimization problem, a flock of particles are put into 

the d-dimensional search space with randomly chosen 
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velocities and positions knowing their best values so far (Pbest) 

and the position in the d-dimensional space. 

The velocity of each particle, adjusted according to its 

own flying experience and the other particle‟s flying 

experience. For example, the i-th particle is represented as xi = 

(xi,1 ,xi,2 ,…, xi,d) in the d-dimensional space. The best 

previous position of the i-th particle is recorded and represented 

as: 

Pbesti = (Pbesti,1, Pbesti,2 ,..., Pbest i,d)         (9) 

 

The index of best particle among all of the particles in the 

group is gbestd. The velocity for particle i is represented as vi = 

(vi,1 ,vi,2 ,…, vi,d). The modified velocity and position of each 

particle can be calculated using the current velocity and the 

distance from Pbesti, d to gbestd as shown in the following 

formulas [16-18]: 
 

 

Vi,m
 i+1 = W. Vi,m

 i + C1 ∗ rand  ∗  Pbesti,m − Xi,m
 i   

+C2 ∗ rand  ∗  Gbesti,m − Xi,m
 i   10  

 

Xi,m
 i+1 = Xi,m

 i + Vi,m
 i+1    i = 1,2, … n      m =

1,2, … d(11) 
 

PPID Controller  

The specification of the designed BFA technique is shown in 

Table2.  

 
TABLE 2. SPECIFICATION OF THE PSO 

Size of the swarm " no of birds " 50         

Maximum number of "birds steps" 50 

pso momentum or inertia 0.9          

 

Figure 5 shows the block diagram for adjusting the PID 

parameters via PSO on line with the SIMULINK model. To 

begin with, the PSO should be provided with a population of 

PID sets. 

 
 

Figure 5: The block diagram of proposed PID Controller 

with PSO algorithms 
 

VI. GENETIC ALGORITHM (GA) 

 

Genetic programming [16-18] is an automated method for 

solving problems. Specifically, genetic programming 

progressively breeds a population of computer programs over a 

series of generations. Genetic programming is a probabilistic 

algorithm that searches the space of compositions of the 

available functions and terminals under the guidance of a 

fitness measure. Genetic programming starts with a primordial 

ooze of thousands of randomly created computer programs and 

uses the Darwinian principle of natural selection, 

recombination (crossover), mutation, gene duplication, gene 

deletion, and certain mechanisms of developmental biology to 

breed an improved population over a series of many 

generations.  

Genetic programming breeds computer programs to solve 

problems by executing the following three steps:  

1) Generate an initial population of compositions of the 

functions and terminals of the problem.  

2) Iteratively perform the following substeps (referred to 

herein as a generation) on the population of programs until the 

termination criterion has been satisfied:  

a) Execute each program in the population and assign a 

fitness value using the fitness measure.  

b) Create a new population of programs by applying the 

following operations. The operations are applied to 

program selected from the population with a probability 

based on fitness (with reselection allowed).  

Reproduction: Copy the selected program to the new 

population. The reproduction process can be subdi-vided 

into two subprocesses: Fitness Evaluation and Selection. 

The fitness function is what drives the evolutionary 

process and its purpose is to determine how well a string 

(individual) solves the problem, al-lowing for the 

assessment of the relative performance of each population 

member.  

Crossover: Create a new offspring program for the new 

population by recombining randomly chosen parts of two 

selected programs. Reproduction may proceed in three 

steps as follows: 1) two newly re-produced strings are 

randomly selected from a Mating Pool; 2) a number of 

crossover positions along each string are uniformly 

selected at random and 3) two new strings are created and 

copied to the next generation by swapping string 

characters between the crossover positions defined before.  

Mutation: Create one new offspring program for the new 

population by randomly mutating a randomly chosen part 

of the selected program.  

Architecture-altering operations: Select an architecture-

altering operation from the available repertoire of such 

operations and create one new offspring pro-gram for the 

new population by applying the selected architecture-

altering operation to the selected program.  

3) Designate the individual program that is identified by 

result designation (e.g., the best-so far individual) as the result 

of the run of genetic programming. This result may be a 

solution (or an approximate solution) to the problem. The 

specification of the designed GA technique is shown in Table3. 

 
TABLE 3. SPECIFICATION OF THE GA. 

Population Size  20  

Crossover Rate  0.7  

Mutation Rate  0.05  

Chromosome Length  12  

Precision of Variables  3  

Generation Gap  1  
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Figure 6 shows the flowchart of the parameter optimizing 
procedure using GA. For details of genetic operators and each 
block in the flowchart, one may consult literature [19]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The fitness measure is a mathematical implementation of the 

problem‟s high level requirements. That is, our fit-ness 

measure attempts to optimize for the integral of the time 

absolute error (ITAE) for a step input and also to optimize for 

maximum sensitivity. 

The initial population for choosing PID parameters are selected 

as: KP = 1.2560, KI = 0.0062 and KD = 0.0275 by trial and 

error. 

A fitness evaluation function is needed to calculate the overall 

responses for each of the sets of PID values and from the 

responses generates a fitness value for each set of individuals 

expressed by: 

f t =  t e t  dt
t

0

                                    (12) 

 

Here the goal is to find a set of PID parameters that will 

give a minimum fitness value over the period [0,t]. 
 

VII. ACO-PID IMPLEMENTATION 

ACO is an evolutionary meta-heuristic algorithm based on the 

collective behavior emerging from the interaction of the 

different search threads that has proved effective in solving 

combinatorial optimization problems [20]. 

The Conventional fixed gain PID controller is well known 

technique for industrial control process. The design of this 

controller requires the three main parameters, Proportional gain 

(Kp), Integral time constant (Ki) and derivative time constant 

(Kd). The gains of the controller are tuned by trial and error 

method based on the experience and plant behavior. In 

proposed ACO-PID controller, ACO algorithm is used to 

optimize the gains and the values are applied into the controller 

of the plant as shown in Fig.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective of this algorithm is to optimize the gains of the 

PID controller for the given plant. The proportional gain makes 

the controller respond to the error while the integral derivative 

gain helps to eliminate steady state error and prevent overshoot 

respectively. The plant is replaced by the electrohydraulic 

model developed using simulink in MATLAB. With the 

optimum gains generated by the proposed ACO algorithm the 

models are simulated to validate the performance. The 

flowchart for ACO based PID controller is shown in Fig.8. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIII. SIMULATION OF THE SYSTEM 

A. Simulation with BPID Controller 

The closed loop control system was solved using numerical 

integration technique with varying step size that type ode5. The 

simulation method combines SIMULINK module and M 

functions where, the main program is realized in M function 

Figure 6. The optimization flowchart of GA technique. 
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and the optimized PID controller is predicted using 

SIMULINK. The model of the system is shown in Figure 6. 

The results of tuning PID controller using BFA is shown in 

Table 4; Figure 10 shows the step responses obtained by using 

the optimized feedback. The optimal gains of PID controller 

are calculated to minimize the fitness function which was 

described in section III. 

 
TABLE 4. BPID PARAMETERS AND RESULTS 

 Kp Ki Kd Overshoot Rising Time 

PI 0.8637 -0.0506 0 0.1 0.8 

PD 0.8411 0 0.4085 0 0.65 

PID 0.3846 -0.0725 -0.0890 0 2.2 

 

 

 
 

Figure 9: The Simulink model of BPID and PPID on the Electro system 

 
Figure 10: The step response after applying BPID on the Electro system 

 

B. Simulation with PPID Controller  

The closed loop control system was solved using numerical 

integration technique with varying step size that type ode5. The 

simulation method combines SIMULINK module and M 

functions where, the main program is realized in M function 

and the optimized PID controller is predicted using 

SIMULINK. The model of the system is shown in Figure 9. 

The tuning PID controller using PSO is founded in [21]. The 

results of the model are shown in Table 5; Figure 11 shows the 

step responses obtained by using the optimized feedback. The 

optimal gains of PID controller are calculated to minimize the 

fitness function which was described in section V. 

 
TABLE 5. PPID PARAMETERS AND RESULTS 

 Kp Ki Kd Overshoot Rising Time 

PI 0.7863 -0.1265 0 0 0.9 

PD 0.7582 0 2.4700 0 0.7 

PID 0.7352 -0.2040 4.2379 0 0.6 

 
Figure 11: The step response after applying PPID on the Electro system 

 

C. 3- Simulation with GPID Controller  

The closed loop control system was solved using numerical 

integration technique of Runge-Kutta method with sampling 

time of 0.001 s. The simulation method combines SIMULINK 

module and M functions where, the main program is realized in 

SIMULINK and the optimized PID controller is predicted 

using M function. 

 
TABLE 6. GPID PARAMETERS AND RESULTS 

 Kp Ki Kd Overshoot Rising Time 

PI 1.357 0.0623 0 0.05 0.7 

PD 1.342 0 0.463 0 0.6 

PID 1.138 0.053 0.537 0 0.4 

 

 
 

Figure 12: The step response after applying GPID on the Electro system 

D. Simulation with ACO-PID Controller 

The ACO algorithm was simulated and testes by tuning the 

various parameters like number of ants =500, number of nodes 

= 150, number of generations = 30, to get the optimum values 

as in table 7, and fig. 13 

 
TABLE 7. ACO-PID PARAMETERS AND RESULTS 

 Kp Ki Kd Overshoot Rising Time 

PI 0.954 -0.054 0 0.1 0.9 

PD 0.940 0 1. 618 0 0.8 

PID 0.898 -0.063 -0.231 0 0.6 

 

Double click here to initialize plant data and optimization parameters.
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Figure 13: The step response after applying ACO-PID on the Electro system 

 

IX. DISCUSSIONS 

We show that the response of the electrohydraulic servo 

system by applied several optimization techniques: BPID, 

PPID, GPID, and ACO-PID is more stable than the system 

without controller, and the controller make‟s faster in rising 

time and degrade the overshoot. 

In BPID we show the BPD response is the best response 

comparing with BPI and BPID because the system was not 

stable and has the overshoot and delay in the rising time, so the 

parameters Kp and Kd makes decrease the rising time. In other 

hand, Kd decrease the overshoot so the response in PD and PID 

has no overshoot. 

In PPID, the analysis of the results is the same in BPID but 

in the PPID there is no overshoot in PPI compare with BPI 

because the Kp in PPI is smaller than BPI where when we 

increase Kp it will increase the overshoot. But in other hand, 

the gain in PPID is less than 1 so the steady state error is high 

when the system trying to eliminate the overshot, so this is 

disadvantage for applying PPID and BPID. 

In GPID, there is overshoot for high value of Kp. GA can 

solve this problem if it has more time and space, all 

experiments are applied on Core i2, 0.5G ram. 

But in ACO-PID, we show overshoot in PI, that solved in 

PID, to give good relative rising time as 0.6s as in PPID. 

 

X. CONCLUSIONS 

This paper presents a design method for determining the 

PID controller parameters by using BFA, PSO,GA, and ACO 

that applied on the Electrohydraulic Servo Control System to 

make it in stable condition. The stability was found by 

minimizing the error in step response. To study the comparison 

between four optimization techniques for the Electrohydraulic 

Servo Control System, we show the results that the proposed 

BFA method can avoid the shortcoming of premature 

convergence of PSO method and can obtain higher quality 

solution with better computation efficiency.also GA can find 

higher quality solution with better response if use modern 

personal PC or workstation PC with high specifications. while 

the results of proposed PPID and ACO-PID methodsgave better 

results for electro-hydraulic servo control system in this works. 

Therefore, the proposed methods has more robust stability 

and efficiency, and can solve the searching and tuning 

problems of PID controller parameters more easily and quickly 

than the traditional method.  
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