3,895 research outputs found

    Sharp interface limits of phase-field models

    Full text link
    The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit'' from phase field models which have interfaces that are diffuse on a length scale ξ\xi. In particular,phase-field equations are mapped onto sharp interface equations in the limits ξκ1\xi \kappa \ll 1 and ξv/D1\xi v/D \ll 1, where κ\kappa and vv are respectively the interface curvature and velocity and DD is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure

    Sharp interface limits of phase-field models

    Full text link
    The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit'' from phase field models which have interfaces that are diffuse on a length scale ξ\xi. In particular,phase-field equations are mapped onto sharp interface equations in the limits ξκ1\xi \kappa \ll 1 and ξv/D1\xi v/D \ll 1, where κ\kappa and vv are respectively the interface curvature and velocity and DD is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure

    Universal Dynamics of Phase-Field Models for Dendritic Growth

    Full text link
    We compare time-dependent solutions of different phase-field models for dendritic solidification in two dimensions, including a thermodynamically consistent model and several ad hoc models. The results are identical when the phase-field equations are operating in their appropriate sharp interface limit. The long time steady state results are all in agreement with solvability theory. No computational advantage accrues from using a thermodynamically consistent phase-field model.Comment: 4 pages, 3 postscript figures, in latex, (revtex

    Energy-stable linear schemes for polymer-solvent phase field models

    Full text link
    We present new linear energy-stable numerical schemes for numerical simulation of complex polymer-solvent mixtures. The mathematical model proposed by Zhou, Zhang and E (Physical Review E 73, 2006) consists of the Cahn-Hilliard equation which describes dynamics of the interface that separates polymer and solvent and the Oldroyd-B equations for the hydrodynamics of polymeric mixtures. The model is thermodynamically consistent and dissipates free energy. Our main goal in this paper is to derive numerical schemes for the polymer-solvent mixture model that are energy dissipative and efficient in time. To this end we will propose several problem-suited time discretizations yielding linear schemes and discuss their properties

    Laws of crack motion and phase-field models of fracture

    Full text link
    Recently proposed phase-field models offer self-consistent descriptions of brittle fracture. Here, we analyze these theories in the quasistatic regime of crack propagation. We show how to derive the laws of crack motion either by using solvability conditions in a perturbative treatment for slight departure from the Griffith threshold, or by generalizing the Eshelby tensor to phase-field models. The analysis provides a simple physical interpretation of the second component of the classic Eshelby integral in the limit of vanishing crack propagation velocity: it gives the elastic torque on the crack tip that is needed to balance the Herring torque arising from the anisotropic interface energy. This force balance condition reduces in this limit to the principle of local symmetry in isotropic media and to the principle of maximum energy release rate for smooth curvilinear cracks in anisotropic media. It can also be interpreted physically in this limit based on energetic considerations in the traditional framework of continuum fracture mechanics, in support of its general validity for real systems beyond the scope of phase-field models. Analytical predictions of crack paths in anisotropic media are validated by numerical simulations. Simulations also show that these predictions hold even if the phase-field dynamics is modified to make the failure process irreversible. In addition, the role of dissipative forces on the process zone scale as well as the extension of the results to motion of planar cracks under pure antiplane shear are discussed
    corecore