26,581 research outputs found

    A new approach for estimating northern peatland gross primary productivity using a satellite-sensor-derived chlorophyll index

    No full text
    Carbon flux models that are largely driven by remotely sensed data can be used to estimate gross primary productivity (GPP) over large areas, but despite the importance of peatland ecosystems in the global carbon cycle, relatively little attention has been given to determining their success in these ecosystems. This paper is the first to explore the potential of chlorophyll-based vegetation index models for estimating peatland GPP from satellite data. Using several years of carbon flux data from contrasting peatlands, we explored the relationships between the MERIS terrestrial chlorophyll index (MTCI) and GPP, and determined whether the inclusion of environmental variables such as PAR and temperature, thought to be important determinants of peatland carbon flux, improved upon direct relationships. To place our results in context, we compared the newly developed GPP models with the MODIS (Moderate Resolution Imaging Spectrometer) GPP product. Our results show that simple MTCI-based models can be used for estimates of interannual and intra-annual variability in peatland GPP. The MTCI is a good indicator of GPP and compares favorably with more complex products derived from the MODIS sensor on a site-specific basis. The incorporation of MTCI into a light use efficiency type model, by means of partitioning the fraction of photosynthetic material within a plant canopy, shows most promise for peatland GPP estimation, outperforming all other models. Our results demonstrate that satellite data specifically related to vegetation chlorophyll content may ultimately facilitate improved quantification of peatland carbon flux dynamics

    Restoration of peatlands and greenhouse gas balances

    Get PDF
    In this chapter the impact of peatland restoration on greenhouse gas fluxes is discussed based on a literature review. Casestudies are presented covering different peatland types, different regions and different starting conditions

    Exploring the limits of knowledge on boreal peatland development using a new model: the Holocene Peatland Model

    Get PDF
    The Holocene Peatland Model (HPM) (Frolking et al. 2009, Frolking et al. in prep.) is a recently developed tool integrating up-to-date knowledge on peatland dynamics that explores peatland development and carbon dynamics on a millennial timescale. HPM combines the water and carbon cycles with net primary production and peat decomposition and takes the multiple feedbacks into account. The model remains simple and few site-specific inputs are needed. HPM simulates the transient development of the peatland and delivers peat age, peat depth, peat composition, carbon accumulation and water table depth for each simulated year. Evaluating the ability of the model to reproduce peatland development can be achieved in several manners. Commonly one could choose to compare simulations results with observations from field data. However, we argue that the overall response of the model does not give much information about the value of the model design. Modelling of peatlands dynamics requires a lot of information regarding the behaviour of a peatland system within its environment (including allogenic changes in climate, hydrological conditions, nutrient availability or autogenic processes such as microtopographical effects). The actual state of knowledge does not cover all processes, interactions or feedbacks and a lot of peatland properties are neither well defined nor measured yet, so that estimates have been needed to build the model. The work presented here aims at analyzing the role of the model parameterization on the simulation results. To do so, a sensitivity analysis is performed with a Monte-Carlo analysis and with help of the GUI-HDMR software (Ziehn and Tomlin, 2009). This method ranks the parameters and combinations of them according to their influence on simulation results. The results will emphasize how the simulation is sensitive to the parameter values. First, the distribution of outputs gives insight into the possible responses of the simulation to HPM’s assemblage of current knowledge. Second, the importance of some parameters on simulation results points out certain gaps in the current understanding of peatland dynamics. Thus, this study helps determine some avenues that should be explored in future in order to improve peatlands dynamics understanding

    Sobol\u27 sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?

    Get PDF
    Understanding the development of northern peatlands and their carbon accumulation dynamics is crucial in order to confidently integrate northern peatlands into global carbon cycle models. To achieve this, northern peatland models are becoming increasingly complex and now include feedback processes between peat depth, decomposition, hydrology, and vegetation composition and productivity. Here we present results from a global sensitivity analysis performed to assess the behavior and parameter interaction of a peatland simulation model. A series of simulations of the Holocene Peat Model were performed with different parameter combinations in order to assess the role of parameter interactions on the simulated total carbon mass after 5000 years of peatland development. The impact of parameter uncertainty on the simulation results is highlighted, as is the importance of multiple parameter interactions. The model sensitivity indicates that peat physical properties play an important role in peat accumulation; these parameters are poorly constrained by observations and should be a focus of future research. Furthermore, the results show that autogenic processes are able to produce a wide range of peatland development behaviors independently of any external environmental changes

    Prospects for climate friendly peatland management – Results of a socioeconomic case study in Germany

    Get PDF
    In the current debate on climate protection, agricultural production has become a focal point of interest. This study introduces the climate effectiveness of agricultural management of peat-soils. Agriculture on peatland demands a water-level drawdown that causes aerobe degradation of the soils. The resulting trace-gas emissions have a negative impact on the greenhouse-gas balance. In Germany more than 80% of peatland is used agriculturally; the resulting emissions account for 2.3 – 4.5% of Germany’s overall emission. Climate-friendly peatland management strategies, however, demand enhanced groundwater tables and decreased land-use intensity. With regard to agricultural income, severe economic consequences are to be expected. Against this background we analyse opportunities to reorganise agricultural use of peatland. As it is assumed that the potential to reduce land-use intensity greatly depends on local socio-economic conditions which are likely to vary across different regions, six representative sample regions are surveyed. To analyse microeconomic effects with simultaneous consideration of local diversity, stakeholder workshops and extensive farm surveys were undertaken in all regions. First results indicate that a reorganisation of peatland use causes severe loss of agricultural income and necessitates financial compensation for farmers. However the results also show that the potential of rearrangement varies significantly according to regional conditions.agricultural peatland use, reduction of greenhouse gases, farm survey, economic consequences, Land Economics/Use, Q24, Q54, R58,

    Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream

    Get PDF
    Streams draining peatlands export large quantities of carbon in different chemical forms and are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique information on the source and rate that carbon is cycled through ecosystems, as has recently been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost from peatland streams by evasion (degassing). Peatland streams also have the potential to release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition (bubbling) has been previously reported, diffusive emissions have not. We describe methods that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded from a small peatland stream draining a temperate raised mire. Methane was aged between 1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded from the stream were derived from different source areas, with most evaded CO2 originating from younger layers located nearer the peat surface compared to CH4. The study demonstrates the insight that can be gained into peatland carbon cycling from a methodological development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected at the same time and in the same way

    Butterfly (Lepidoptera: Lycaenidae, Nymphalidae, and Satyridae) Faunas of Three Peatland Habitat Types in the Lake Superior Drainage Basin of Wisconsin

    Get PDF
    The butterflies which complete their entire life cycle within peatland habitats were documented in the Lake Superior drainage basin of northwestern Wisconsin. Seventy peatlands were inventoried over the course of the 1996 growing season, and were classified as either muskeg, kettlehole, or coastal sites. Muskeg peatlands were of similar elevation to the surrounding uplands, possessed drier and more nutrient-poor substrates, and were typically larger than other peatland types. Kettlehole peatlands were wetter and had floating Sphagnum mats which fringed lake margins or were in depressions much lower than the surrounding uplands. Coastal peatlands were located in estuaries along the Lake Superior coast, and possessed relatively eutrophic, wet soils. Muskeg sites harbored the most diverse total fauna, and possessed the highest average number of taxa per site. A highly significant correlation between habitat size and butterfly richness was observed in both muskeg and kettlehole peatlands. The muskeg fauna included five taxa not found in other peatland habitats. These species have arctic-boreal affinities and reach their southern range limit in eastern North America on these sites

    Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century

    Get PDF
    The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways

    Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    Get PDF
    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for empirically testing model predictions by field manipulations. Here, we present a model that describes spatial interactions between vegetation, nutrients, hydrology, and peat. We used this model to study pattern formation as driven by three different mechanisms: peat accumulation, water ponding, and nutrient accumulation. By on-and-off switching of each mechanism, we created a full-factorial design to see how these mechanisms affected surface patterning (pattern of vegetation and peat height) and underlying patterns in nutrients and hydrology. Results revealed that different combinations of structuring mechanisms lead to similar types of peatland surface patterning but contrasting underlying patterns in nutrients and hydrology. These contrasting underlying patterns suggest that the presence or absence of the structuring mechanisms can be identified by relatively simple short-term field measurements of nutrients and hydrology, meaning that longer-term field manipulations can be circumvented. Therefore, this study provides promising avenues for future empirical studies on peatland patternin

    Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene

    Get PDF
    The major increase in atmospheric methane (CH4) concentration during the last glacial-interglacial transition provides a useful example for understanding the interactions and feedbacks among Earth\u27s climate, biosphere carbon cycling, and atmospheric chemistry. However, the causes of CH4 doubling during the last deglaciation are still uncertain and debated. Although the ice-core data consistently suggest a dominant contribution from northern high-latitude wetlands in the early Holocene, identifying the actual sources from the ground-based data has been elusive. Here we present data syntheses and a case study from Alaska to demonstrate the importance of northern wetlands in contributing to high atmospheric CH4concentration in the early Holocene. Our data indicate that new peatland formation as well as peat accumulation in northern high-latitude regions increased more than threefold in the early Holocene in response to climate warming and the availability of new habitat as a result of deglaciation. Furthermore, we show that marshes and wet fens that represent early stages of wetland succession were likely more widespread in the early Holocene. These wetlands are associated with high CH4 emissions due to high primary productivity and the presence of emergent plant species that facilitate CH4 transport to the atmosphere. We argue that early wetland succession and rapid peat accumulation and expansion (not simply initiation) contributed to high CH4 emissions from northern regions, potentially contributing to the sharp rise in atmospheric CH4 at the onset of the Holocene
    corecore