5,911 research outputs found

    Maximal Ratio Transmission in Wireless Poisson Networks under Spatially Correlated Fading Channels

    Full text link
    The downlink of a wireless network where multi-antenna base stations (BSs) communicate with single-antenna mobile stations (MSs) using maximal ratio transmission (MRT) is considered here. The locations of BSs are modeled by a homogeneous Poisson point process (PPP) and the channel gains between the multiple antennas of each BS and the single antenna of each MS are modeled as spatially arbitrarily correlated Rayleigh random variables. We first present novel closed-form expressions for the distribution of the power of the interference resulting from the coexistence of one intended and one unintended MRT over the considered correlated fading channels. The derived expressions are then used to obtain closed-form expressions for the success probability and area spectral efficiency of the wireless communication network under investigation. Simulation results corroborate the validity of the presented expressions. A key result of this work is that the effect of spatial correlation on the network throughput may be contrasting depending on the density of BSs, the signal-to-interference-plus-noise ratio (SINR) level, and the background noise power.Comment: 6 pages, 6 figures, IEEE GLOBECOM 201

    Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels - A Stochastic Geometry Approach

    Full text link
    In this paper, we introduce an analytical framework to compute the average rate of downlink heterogeneous cellular networks. The framework leverages recent application of stochastic geometry to other-cell interference modeling and analysis. The heterogeneous cellular network is modeled as the superposition of many tiers of Base Stations (BSs) having different transmit power, density, path-loss exponent, fading parameters and distribution, and unequal biasing for flexible tier association. A long-term averaged maximum biased-received-power tier association is considered. The positions of the BSs in each tier are modeled as points of an independent Poisson Point Process (PPP). Under these assumptions, we introduce a new analytical methodology to evaluate the average rate, which avoids the computation of the Coverage Probability (Pcov) and needs only the Moment Generating Function (MGF) of the aggregate interference at the probe mobile terminal. The distinguishable characteristic of our analytical methodology consists in providing a tractable and numerically efficient framework that is applicable to general fading distributions, including composite fading channels with small- and mid-scale fluctuations. In addition, our method can efficiently handle correlated Log-Normal shadowing with little increase of the computational complexity. The proposed MGF-based approach needs the computation of either a single or a two-fold numerical integral, thus reducing the complexity of Pcov-based frameworks, which require, for general fading distributions, the computation of a four-fold integral.Comment: Accepted for publication in IEEE Transactions on Communications, to appea

    Asymptotic Mutual Information Statistics of Separately-Correlated Rician Fading MIMO Channels

    Full text link
    Precise characterization of the mutual information of MIMO systems is required to assess the throughput of wireless communication channels in the presence of Rician fading and spatial correlation. Here, we present an asymptotic approach allowing to approximate the distribution of the mutual information as a Gaussian distribution in order to provide both the average achievable rate and the outage probability. More precisely, the mean and variance of the mutual information of the separatelycorrelated Rician fading MIMO channel are derived when the number of transmit and receive antennas grows asymptotically large and their ratio approaches a finite constant. The derivation is based on the replica method, an asymptotic technique widely used in theoretical physics and, more recently, in the performance analysis of communication (CDMA and MIMO) systems. The replica method allows to analyze very difficult system cases in a comparatively simple way though some authors pointed out that its assumptions are not always rigorous. Being aware of this, we underline the key assumptions made in this setting, quite similar to the assumptions made in the technical literature using the replica method in their asymptotic analyses. As far as concerns the convergence of the mutual information to the Gaussian distribution, it is shown that it holds under some mild technical conditions, which are tantamount to assuming that the spatial correlation structure has no asymptotically dominant eigenmodes. The accuracy of the asymptotic approach is assessed by providing a sizeable number of numerical results. It is shown that the approximation is very accurate in a wide variety of system settings even when the number of transmit and receive antennas is as small as a few units.Comment: - submitted to the IEEE Transactions on Information Theory on Nov. 19, 2006 - revised and submitted to the IEEE Transactions on Information Theory on Dec. 19, 200
    • …
    corecore