2,296 research outputs found

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Model-In-the-Loop Testing of Control Systems and Path Planner Algorithms for QuadRotor UAVs

    Get PDF
    Real systems, as Unmanned Aerial Vehicles (UAVs), are usually subject to disturbances and parametric uncertainties, which could compromise the mission accomplishment, considering particularly harsh environments or challenging applications. For this reason, the main idea proposed in this research is the design of the on-board software, as autopilot software candidate, for a multirotor UAV. In detail, the inner loop of the autopilot system is designed with a variable structure control system, based on sliding mode theory, able to handle external disturbances and uncertainties. This controller is compared with a simple Proportional-Integral-Derivative controller. The key aspects of the proposed methodology are the robustness to bounded disturbances and parametric uncertainties of the proposed combination of guidance and control algorithms. A path-following algorithm is designated for the guidance task, which provides the desired waypoints to the control algorithm. Model-in-the-loop simulations have been performed to validate the proposed approaches. Computationally efficient algorithms are proposed, as combination of a robust control system and path planner. Extensive simulations are performed to show the effectiveness of the proposed methodologies, considering both disturbances and uncertainties

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    • …
    corecore