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Model-In-the-Loop Testing of Control Systems and Path Planner Algorithms
for QuadRotor UAVs

Iris David Du Mutel de Pierrepont Franzetti1, Davide Carminati2, Matteo Scanavino2, and Elisa Capello3

Abstract— Real systems, as Unmanned Aerial Vehicles
(UAVs), are usually subject to disturbances and parametric
uncertainties, which could compromise the mission accomplish-
ment, considering particularly harsh environments or challeng-
ing applications. For this reason, the main idea proposed in this
research is the design of the on-board software, as autopilot
software candidate, for a multirotor UAV. In detail, the inner
loop of the autopilot system is designed with a variable structure
control system, based on sliding mode theory, able to handle
external disturbances and uncertainties. This controller is com-
pared with a simple Proportional-Integral-Derivative controller.
The key aspects of the proposed methodology are the robustness
to bounded disturbances and parametric uncertainties of the
proposed combination of guidance and control algorithms. A
path-following algorithm is designated for the guidance task,
which provides the desired waypoints to the control algorithm.
Model-in-the-loop simulations have been performed to validate
the proposed approaches. Computationally efficient algorithms
are proposed, as combination of a robust control system and
path planner. Extensive simulations are performed to show the
effectiveness of the proposed methodologies, considering both
disturbances and uncertainties.

Index Terms— Indoor applications for UAVs, Bezier-based
Trajectory Planner, Robust GNC, Model-In-the-Loop Simula-
tions.

I. INTRODUCTION

Indoor Unmanned Aerial Systems (UASs) are widely used
in a variety of applications. They can be exploited from
industrial scenarios to monitoring and supervising critical
operations. Initially developed for military purposes [1],
drones have become popular for scientific research also, as
for remote sensing and mapping. In particular, the main
challenge is related to the GPS-denied scenario, that is
emerging nowadays due to the advancement in technology
and the flexibility of these platforms. As clearly explained
in [2], the majority of the commercial UASs are able to
operate in an outdoor environment. The recent development
and spreading of Unmanned Aerial Vehicles (UAVs) in both
commercial and civil fields is due to the many possible
applications and activities in which they can get involved.
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In the commercial field, they can be used to supervise
warehouse lots, advertisement or even delivering products
and services. On the other hand, the civil uses are oriented
towards no profit-making objectives such as traffic manage-
ment or pollution tracking in big cities. It has to be noted that
the characteristics of drones make them suitable for rescue
tasks after catastrophic events or surveillance missions. All
these applications constitute just a few of the possible roles
drones can play, that not only help humans but most times
prevent them from being exposed to hazardous conditions.
Even then, since drone industry grows exponentially, social
and ethical aspects of their use must be evaluated [3].

The main objective of this research is the evaluation
and design of a computational efficient software, which
represents the on-board algorithms of a multirotor UAV.
The selected algorithms are deployed on the on-board au-
topilot and tested for indoor applications, combined with
a dedicated sensor. To properly evaluate the reliability of
the proposed guidance and control scheme, the classical
multi-step software verification & validation approach for
model-based design has been followed. As described in
[4], the first step consists in performing Model-In-the-Loop
(MIL) testing, i.e. executing the controller algorithm for non-
real-time execution on the same host platform that is used
by the modeling environment. The next step will involve
the Processor-In-the-Loop (PIL) testing, during which the
model does a single calculation iteration. Then, inputs are
calculated and passed to a code running on the embedded
microprocessor.

The proposed approach combines the waypoint-based
guidance strategy proposed in [5], [6] with three tracking-
based schemes: (1) a full Proportional-Integral-Derivative
(PID) [7] control and (2-3) two combined structures includ-
ing a Linear Quadratic Regulator (LQR) [8] and a first order
Sliding Mode Controller (SMC) [9], to guarantee tracking of
desired waypoints. Moreover, a two loop control scheme is
proposed to improve the UAV performance with respect to
classical approaches, including different control laws for the
fast dynamics (i.e. inner loop dynamics). As previously said,
a multi-step software approach for model-based design has
been followed.

The main parameters of the quadrotor, as moments of
inertia or thrust/torque curves, are experimentally identified.
Starting from the work of [10], moments of inertia are
identified with a compound pendulum method [11], which



is a model-based approach. This method is an open loop
identification method, in which a dedicated sensor is used
for the measurements of pendulum physical parameters.
Moreover, the thrust and torque fitting curves are identified
with a test benchmark [12], as function of the selected motors
and propellers.

In our paper, the limited computational power of the
on-board systems is simulated considering low update fre-
quency of the controller, including actuation limitations. As
described in [13], the sampling speed is one issue to take
into account, since the accuracy of the proposed strategy is
function of the maximum attainable sample frequency. One
key aspect of the proposed strategies is to show the error
accuracy, in terms of trajectory tracking, even when limited-
capacity hardware is available. In this paper, hardware con-
straints, in which a reduced update frequency and saturation
on the actuation system, are included. The key features of this
proposed on-board software are the preliminary validation of
computationally-efficient robust control systems, in which a
high-level software is used for the definition of them. The
controllers are translated in C/C++ language in order to be
deployed in the on-board software and tested by flights. This
means that the default firmware is updated with the designed
control laws. The novelty of this research is twofold: (i)
combination of computational efficient algorithms, able to
be easily translated to on-board software and deployed on
the autopilot board and (ii) model-in-loop simulations are
performed, including identification of the quadrotor parame-
ters and state estimation with a dedicated sensor. Moreover,
the quadrotor is connected by Wi-Fi with a ground control
station, in order to include sensor measurements in the
simulations.

The paper is organized as follows. The prototype of the
Quadrotor is introduced in Section II, in which the descrip-
tion of the autopilot and dedicated sensors are included. The
Simulation environment is deeply described in Section III.
All the elements of the complete simulator are detailed in
this Section. Section IV includes the path planners, analyzed
in this paper. In a similar way, the cascade controllers are
in Section V. MIL Simulations are detailed in Section VI.
The simulations parameters and the computational effort are
included in this section. Finally, conclusions are drawn in
Section VII.

II. REAL-WORLD QUADROTOR PROTOTYPE

This work is based on the prototype quadrotor depicted on
Figure 1, which was developed at Politecnico di Torino, in
the Flight Mechanics Research Group (Dept. of Mechanical
and Aerospace Engineering). The quadrotor prototype was
designed for sensor integration in GPS-denied applications
[14] and propeller characterization in non- conventional
environments (i.e. harsh environments) [15].

The parameters, used for the design of the simulation
model, are experimentally identified and the exploited soft-
ware architecture features the main elements of the PX4
Flight Stack. The quadrotor is mainly used for indoor flights

Fig. 1: Quadrotor prototype

in GPS-denied environment and it is equipped with the Pix-
hawk 2.1 Cube Autopilot (Figure 2a) running the PX4 Flight
Stack and a MoCap sensor - the Otus Tracker (Figure 2b) -
as a replacement for the GPS sensor.

(a) On-board Autopilot (b) Otus Tracker

Fig. 2: On-board system and dedicated sensor

The autopilot is an ARM Cortex M4 based embedded
system running the Nuttx Real-Time operating system that
executes the PX4 Flight Stack processes [16]. The PX4 is
equipped with an Inertial Measurement Unit (IMU), which
includes three redundant accelerometers, gyroscopes and
compasses and two redundant barometers. The advantage
of using this software framework is the possibility of cus-
tomization of the control laws using high-level software such,
as Simulink. The Wi-Fi communications with the ground
station PC are enabled by an on board Raspberry Pi 3B.
The communication link and all the devices, used for the
communication, are in Figure 3.
The quadrotor external frame is in carbon fiber except for the
arms, which are in aluminum alloy. The size and the used
convention are shown in Figure 4.

Brushless electrical motors by T-motor MN2212-18 and
propellers by HQProp 10′′ × 4.5′′ are used.

III. SIMULATION ENVIRONMENT

The simulation environment is used for designing, tuning
and validating the GNC software developed for the consid-
ered UAV. The overall scheme of this environment is shown



Fig. 3: On-board connection scheme and avionics

Fig. 4: Main dimensions of the prototype UAV

in Figure 5, in which the main features of the firmware soft-
ware structure are included. Moreover, the quadrotor main
geometric parameters are experimentally determined from
the prototype, as we detail later in this Section. Furthermore,
this framework allows the Controller Simulink block to be
easily translated to C/C++ language and deployed on the
quadrotor autopilot.

Fig. 5: Simulation block diagram

As a consequence, the signal provided by Controller block
is the duty cycle of the Pulse Width Modulation (PWM)
signal sent to the motors, i.e. the signal sent to the ”real”
system. The Plant block contains the mathematical model
of the quadrotor dynamics and the experimental model of

the actuators, the Sensors block models the uncertainty given
by the employed sensors, the Extended Kalman Filter block
performs data fusion and states estimation, the Trajectory
Planner block provides the controller the trajectory. The
model is implemented in MATLAB®/Simulink®R2019a.

A. Dynamics identification - Plant

The plant block includes the actuators model and the
quadrotor equations of motion . The former converts the duty
cycle values coming from the Controller block into physical
quantities compatible with the latter.

1) Quadrotor dynamical model: The dynamical
model is based on the well-known equations of
motion of a 6 Degrees-of-Freedom body [17], [18].
No external disturbances or aerodynamic forces are
considered in the formulation. The state vector is:
x =

[
pN pE h φ θ ψ u v w p q r

]ᵀ. The
nonlinear mathematical model can be written in the
form: ẋ = f(x) where:

f(x) =



RNED
body

uv
w


p+ tan θ(q sinφ+ r cosφ)

q cosφ− r sinφ
1

cos θ
(q sinφ+ r cosφ)

rv − qw − g sin θ +
Fx
m

−ru+ pw + g sinφ cos θ +
Fy
m

qu− pv + g cosφ cos θ +
Fz
m

q(c1r + c2p) + c3τx + c4τz
prc5 − (p2 − r2)c6 + c7τy
q(c8p− c2r) + c4τx + c9τz



, (1)

in which RNED
body is the transformation matrix between the

body coordinates and the North-East-Down (NED) inertial
coordinates. Finally, the coefficients ci are:

c1 =
Jxz(Jx − Jy + Jz)

JxJy − J2
xz

c2 =
Jxz(Jx − Jy + Jz)

JxJy − J2
xz

c3 =
Jz

JxJy − J2
xz

c4 =
Jxz

JxJy − J2
xz

c5 =
Jz − Jx
Jy

c6 =
Jxz
Jy

c7 =
1

Jy
c8 =

J2
xz + Jx(Jx − Jy)

JxJy − J2
xz

c9 =
Jx

JxJy − J2
xz

.
2) Actuator experimental modeling: A test bench is used

to map the duty cycle value provided by the Controller block
with the corresponding value of thrust and torque generated
by motors and propellers. The RCBenchmark Series 1520
Thrust Stand (Figure 6a) [12] is able to record electrical
and mechanical values from the motor and propeller set.
The relationship between the PWM signal and the angular
speed expressed in RPM (Figure 6b) is linear in the region
in which propellers actually spin. Figure 7a and Figure 7b
show the curve fitting that allows the conversion from the



(a) Test bench
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(b) Relationship between duty cycle and
angular speed

Fig. 6: Identification benchmark for motors and propellers

duty cycle value into physical values of the input to the
dynamical equations.

(a) Relationship between duty
cycle and propellers thrust

(b) Relationship between duty
cycle and propellers torque

Fig. 7: Experimental evaluation of thrust and torque

B. Sensors

The Sensors block reproduces the uncertainties of the
on-board equipment, modeled as white noise and a bias
as reported in [19]. Moreover, it provides as output only
the available states (i.e. measures), that are inputs of the
Extended Kalman Filter (EKF). The output of this block can
be detailed as follows:

z(t) = h(x,t) =



Macc

 rv − qw − g sin θ
−ru+ pw + g sinφ cos θ

qu− pv + g cosφ cos θ +
Fz
m

Sacc + ∆acc + vacc

Mgyro

pq
r

Sgyro + ∆gyro + vgyro

kBp0e
−
gh

RT0 + ∆baro + vbaro

Mpos
Otus

pNpE
h

SposOtus + ∆pos
Otus + vposOtus

Matt
otus

φθ
ψ

SattOtus + ∆att
Otus + vattOtus



.

(2)

∆(∗) is the sensor bias, v(∗) is the sensor noise and M(∗) and
S(∗) are the misalignment and scale factor matrices defined
as:

M(∗) = MT
(∗) =

 1 Mxy Mxz

Myx 1 Myz

Mzx Mzy 1

 S(∗) =

Sx 0 0
0 Sy 0
0 0 Sz



C. Extended Kalman Filter

The Extended Kalman Filter block performs data fusion
of the redundant data provided by the Otus Tracker and state
estimation (by EKF and sensors). It is a discrete-time filter,
starting from the nonlinear system


x(k+1) = fDT(x(k),u(k))

+ v1

y(k) = hnoiseless(x(k))

z(k) = h(x(k))

, (3)

where v1 is the process noise with variance V1. The variance
V1 is determined with a trial and error method, while V2 -
related to the noises in Equation 2 - is determined experi-
mentally exploiting the data collected during test flights. The
blocks F(k−1) and H(k) are defined as

F(k−1) =
∂fDT

∂x

∣∣∣∣
x̂(k−1|k−1)

H(k) =
∂h

∂x

∣∣∣∣
x̂(k|k)

.

D. Identification of moments of inertia

In this work, experimental values have been obtained as a
result of several tests using a pendulum. A similar procedure
as in [10] has been followed, obtaining the equations of
motion from the Lagrangian of the system. The moments
of inertia can be computed from Equation 4:

I =

(
T

2π

)2

(mg
l1
2

+m1g(l1 + d))−ml21
4
−m1(l1 + d)2 − Irod,

(4)

where m is the mass of the bar, g is the value of acceleration
of gravity, l1 is the distance between the fixed point of the
pendulum and the Center of Gravity (CoG) of the bar, m1

is the mass of the quadrotor, d is the distance between
the CoG of the bar and the Center of Mass (CoM) of
the quadrotor. We measure the angle of oscillation of the
pendulum θ and the period of oscillation T with a dedicated
sensor. The scope of this method is to identify Irod and
I , which are the moments of inertia of the rod and the
quadcopter, respectively. So, the angle of the pendulum is
evaluated with the Otus Tracker and the results are recorded
through RCbenchmark Tracking Lab interface. Positions and
velocities have been also recorded. Ten experiments are
carried out for each axis of the quadrotor. In figures 8 and
9 the measurements of yaw and pitch angles during the
evaluation of Ixx and Izz , respectively, are exposed.



Fig. 8: Yaw angle measurement, for the evaluation of Izz

Fig. 9: Pitch angle measurement, for the evaluation of Ixx

Results from testing determine that the values of inertia
are 0.0331 kgm2 for Ixx, 0.0338 kgm2 for Iyy and 0.0504
kgm2 for Izz .

IV. TRAJECTORY PLANNER

A trajectory planner is designed with the aim of gener-
ating position and velocity references to be tested with the
proposed controllers. For this purpose, a list of waypoints
and their corresponding times of arrival must be provided
beforehand within the 2D x-y plane.

In this work, two alternatives concerning the shape of the
trajectory are exploited: Dubins curves and Bézier curves.
For the Dubins planner, circle arcs and straight lines are
defined to pass over the target points [20], while the latter
allow a more flexible design, choosing the shape and length
of the curves [21]. What is sought through the use of
curves in the trajectory planning approach is the continuity
of the references obtained from it. This can be addressed
from two different perspectives: (i) continuity within the
same curve or (ii) at the joint of two consecutive curves.
The first case corresponds to function continuity, where a
function of class Cn with n ≥1 denotes the existence of
its partial derivatives of order n, all of them continuous.
On the other hand, the continuity in the union of curves is
defined as Gi or geometric continuity. It implies the existence
and matching of the derivatives of order i at the joining
point of two independent curves. A compound curve is G0

continuous if both sections coincide in the position of the
joining point. The continuity degree can be increased as
additional restrictions are added up. For planar curves, the
maximum curvature degree accessible is G2 [22].
Depending on the trajectory planning approach, references
will be computed differently. Only vertical displacement is
addressed identically in both cases. The vertical speed is
computed as a trapezoidal profile and the position reference
is obtained through its integration.

A. Dubins curves

A Dubins curve is defined as the shortest path between
two points with an initial and final heading, respectively [20].
Such curves can be composed by three different fragments:
a right-oriented curve, a left-oriented curve or a straight line.
This arrangement ensures continuity in position, but this can
not be said about curvature. When switching from a straight
segment of curvature κ = 0 to a circular segment with
κ = 1

R , with R being the predefined radius of the curved
segments, the continuity is lost. If a trajectory is designed
using Dubins curves, the heading of the waypoints should
be indicated beforehand by the user. The velocity profiles
have been computed using the times of arrival together with
an imposed trapezoidal profile. In Figure 10, vmax is the

Velocity

Time

Fig. 10: Trapezoidal velocity profile

maximum value of velocity in a given direction, t∗ is the time
where the maximum velocity is reached, ∆T is the period in
which the velocity is maximum and at t̂, the velocity starts
decreasing.

The heading reference ψdes is comprised by the values of
heading at each point of the trajectory. Then, the turning rate
is computed as the discrete derivative of the heading as in
Equation 5,

ψ̇k =
ψk+1 − ψk

δt
, (5)

where δt is the time interval between two consecutive points
of the trajectory.

B. Bézier curves

The output of the Bézier planner is a series of points,
which guide the quadrotor to the final point. Given start and
ending coordinates, a set of intermediate points is arranged
to define the curve’s length and curvature. This guarantees a



more accurate tracking of the desired points. A Bézier curve
of degree n is defined by Equation 6:

B(t) =

n∑
i=0

(
n

i

)
Pi(1− t)n−iti, (6)

where t ∈ [0, 1], being t the parameter of the curve [23].
In this work, cubic Bézier curves have been used in order
to guarantee G1 continuity of the whole path, implying
continuity in position and in its first derivative.

A Bézier curve is continuous as it is infinitely differen-
tiable, but, when it comes to joining two consecutive curves,
differentiability is highly desirable but not always achieved.
In this case, some geometrical constraints can be added to
ensure such condition.

Let Q and R be two Bézier curves of the same order n de-
fined by (Q0, Q1, ..., Qn) and (R0, R1, ..., Rn), respectively.
The continuity in position (i.e, G0 continuity) is satisfied
when condition 7 is fulfilled.

R0 = Qn. (7)

Moreover, to achieve G1 continuity, we have to ensure
Q(1)′ = R(0)′. Making the appropriate derivation and
substitution of the t values, the remaining condition is 8:

Qn −Qn−1 = R1 −R0. (8)

Substituting 7 in 8, results in:

R1 = 2Qn −Qn−1. (9)

This condition is the same as imposing collinearity between
the last control point of the previous segment, the link point
of the two curves and the first control point of the following
segment (see Figure 11).

Fig. 11: Collinearity condition in cubic Bézier curves

Once the path has been generated, the velocity profiles are
computed as the derivative of the position in time. The yaw
angle reference is computed as the derivative of the curve
w.r.t the parameter t. Finally, the rate of change of the yaw
angle ψ̇des is obtained as the time derivative of the heading.

V. DESIGN OF CONTROLLERS

In this work, three different approaches have been con-
sidered regarding the control of the quadrotor: (1) a full
PID control [7] and (2-3) two combined structures including
a Linear Quadratic Regulator (LQR) [8] and a first order
Sliding Mode Controller [24].

A. PID

The PID controller is implemented using a cascade archi-
tecture, in which a slower outer loop and a faster inner loop
are present [25]. This structure is described in Figure 12.
The position control is handled with outer PD control system

𝑃𝐷: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝐼𝐷: 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝐼𝐷: 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑥𝑑𝑒𝑠,  𝑥𝑑𝑒𝑠
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 𝜙,  𝜃,   𝜙,   𝜃

𝜙𝑑𝑒𝑠 ,

𝜃𝑑𝑒𝑠,

 𝜙𝑑𝑒𝑠

 𝜃𝑑𝑒𝑠

 , 𝜓𝑑𝑒𝑠𝜓𝑑𝑒𝑠

𝑅𝑜𝑙𝑙

𝑃𝑖𝑡𝑐ℎ

𝑌𝑎𝑤

𝑇ℎ𝑟𝑢𝑠𝑡ℎ𝑑𝑒𝑠,  ℎ𝑑𝑒𝑠

 ℎ   ℎ

𝐼𝑛𝑛𝑒𝑟 𝑙𝑜𝑜𝑝𝑂𝑢𝑡𝑒𝑟 𝑙𝑜𝑜𝑝  𝑥,  𝑦,   𝑥,   𝑦

Fig. 12: PID-based cascade controller scheme

and, on the other hand, the attitude and altitude variables are
controlled by inner PID control system. Note that, for each
variable (i.e. x, y, φ, θ, ψ and h), an independent controller
has been used.

B. LQR

Considering the state space representation of the linearized
model

ẋ = Ax+Bu

y = Cx+Du
, (10)

where the corresponding values in the matrices A, B, C
and D are in Appendix I. As well known, a state feedback
policy of the form u = −KLQR · x such that minimizes a
cost function is sought. The cost function J corresponds to
Equation 11

J =
1

2

n∑
0

(xTQx+ uTRu). (11)

Then, state-feedback matrix is the solution to Riccati’s
algebraic equation

ATS + SA− SBR−1BTS +Q = 0. (12)

Finally, the optimal gain is defined as

K = R−1BTS. (13)



Matrices Q and R are usually chosen by Bryson’s method
[26]. Then, by means of MATLAB’s ‘lqr’ function as in
expression 14, KLQR is obtained.[

KLQR, S, CLP
]

= lrq(A, B, Q, R). (14)

The LQR control scheme is used for tracking xdes, which
includes all the states . Besides, a PID controller deals with
the altitude control using the same scheme as previously
described for the inner loop.

C. SMC

Sliding Mode Control (SMC) [9] is a type of Variable
Structure Control (VSC) in which states are constrained
on a suitably defined sliding surface. The SMC has good
performance, using a limited amount of computational effort.
The drawbacks are a high command activity, that leads to
a higher energy consumption, and the chattering problem
[27]. In this work, a First-Order SMC [28] is designed and
it is implemented in the faster inner loop, while the outer
loop is driven by the same PD position controller described
in subsection V-A. The overall control scheme is shown in
Figure 13.

Fig. 13: SMC-based cascade controller scheme

Different sliding surfaces are defined for the variables con-
trolled by SMC. A candidate sliding surface for altitude
control is

s(h) =
˙̃
h− λalth̃, (15)

where h̃ = hdes− ĥNED is the error on the vertical position
of the quadrotor. The control law for vertical displacements
is

Fz =
m

cos θ cosφ
(g − λalth̃)−Ksign(s(h)), (16)

where ˙̃
h and h̃ are the errors on the vertical position and

velocity in the inertial frame, m the mass of the quadrotor,
g the gravitational acceleration and λalt and K positive
parameters to be tuned.
The attitude controller is based on quaternions and Euler

angles derivatives since these values are provided by the EKF
process in the PX4 Flight Stack. A candidate sliding surface
for attitude control is

s(φ,θ,ψ,q) =


˙̃
φ
˙̃
θ
˙̃
ψ

+ Λq̃ =


˙̃
φ
˙̃
θ
˙̃
ψ

+

λroll 0 0
0 λpitch 0
0 0 λyaw

 q̃

(17)

and the control law is:

τxτy
τz

 = −

(Jy − Jz)ψ̇θ̇
(Jz − Jx)ψ̇φ̇

(Jx − Jy)θ̇φ̇

+ Λ

Jx 0 0
0 Jy 0
0 0 Jz

 ˙̃q−Ksign(s),

(18)

where ˙̃
φ, ˙̃
θ and ˙̃

ψ are the derivatives of the error on the Euler
angles, Λ and K positive-definite matrices of the parameters
to be tuned and q̃ is the imaginary part of the quaternion
error q̃.

VI. MODEL-IN-THE-LOOP SIMULATIONS

In this section, both trajectory planning approaches are
tested with the proposed controllers, explained beforehand,
within the MATLAB Simulink model of the quadcopter. The
control gains are selected for each control system. The Q
and R matrices of LQR controller are chosen as two identity
matrices. The parameters of the PID controller are listed in
Table I, while the SMC parameters are listed in Table II.

Inner Loop
Channel Param Value

Pitch

KP 6
KI 0.05
KD 0.3
Sat. ±3.2Nm

Roll

KP 6
KI 0.05
KD 0.3
Sat. ±3.2Nm

Yaw

KP 0.25
KI 0.05
KD 0.27
Sat. ±1Nm

Thrust

KP 60
KI 70
KD 40
Sat. 32N

(a) Inner Loop PID parameters

Outer Loop
Chn Param Value

Pos (N)
KP 0.1
KD 0.5
Sat. ±π

6
rad

Pos (E)

KP 0.1
KD 0.5
Sat. ±π

6
rad

(b) Outer Loop PD parameters

TABLE I: PID parameters



Inner Loop
Chn Param Value

Pitch
λθ 20
kθ −0.2
Sat. ±3.2Nm

Roll
λφ 20
kφ −0.2
Sat. ±3.2Nm

Yaw
λψ 10
kψ −0.2
Sat. ±1Nm

Thrust
λT 40
kT 2
Sat. 32N

(a) Inner Loop

Outer Loop
Chn Param Value

Pos
(N)

KP 0.15
KD 0.22

Sat. φ, θ ±π
6
rad

Sat. φ̇, θ̇ ±1rad/s

Pos
(E)

KP 0.15
KD 0.22

Sat. φ, θ ±π
6
rad

Sat. φ̇, θ̇ ±1rad/s

(b) Outer Loop PD

TABLE II: SMC parameters

Saturation limits have been imposed to all signals to avoid
reaching unfeasible values during simulations.

Fixed-step simulations are performed with an ode4 solver,
and a sample time of 1000 Hz for the quadrotor dynamics.
Instead, a fixed-step discrete sample frequency of 125 Hz is
considered for all the controller schemes, the EKF and the
sensors, in accordance with the PX4 variable refresh rate.
Note that, as previously explained, in order to include the
limited computational power of the on-board systems, the
frequency of all the subsystems is limited. At the beginning
of the simulations, the quadrotor is set at zero altitude (on
ground), pointing North position.

A. Infinity-shapped pattern

This pattern comprises a change in altitude and then a
planar trajectory in the shape of an ‘8’. The resulting patterns
and simulated results can be seen in figures 14 and 15:

Fig. 14: Dubins planar trajectory simulated with LQR (or-
ange line), PID (green line) and SMC (blue line) controllers

To generate the Dubins-based pattern, a curvature radius of
0.2 m and a stepsize of 1 mm are chosen.

Fig. 15: Bézier planar trajectory simulated with LQR (orange
line), PID (green line) and SMC (blue line) controllers

Better results are obtained when the trajectory is generated
using Bézier curves. In Figure 14, some overshoot is present
in the case of the SMC in the intersection of segments.
The LQR has a very similar behaviour, and both controllers
exceed the final waypoint while the PID finishes the pattern
closer to it. In the Bézier case, the PID shows a greater
overshoot than the other two.

Fig. 16: Bézier Euler angles: a. simulated angles (orange
line) and b. reference (blue line) for the SMC controller

In general, the three controllers give good results when fol-
lowing the reference trajectory. However, the SMC presents
higher accuracy with respect to the other two solutions. In
Figure 16, the attitude response of the model when using the
SMC is displayed. No reference in heading is produced for
this pattern.

B. S-shaped pattern with altitude variations

This pattern contains changes in position, including vari-
ations in the altitude halfway through the path, and changes
in attitude. Moreover, a reference for the heading is gener-
ated. In Figure 17, the position accuracy of the SMC can
be appreciated. The final waypoint is reached within the
expected time. Unlike with Bézier curves, the quadrotor is
not able to fly-by all the waypoints in the trajectory with



Fig. 17: 3D trajectory simulated with SMC using Bézier
(green line) and Dubins (blue line) curves

the Dubins-based trajectory planner. The attitude behaviour
obtained for both cases is depicted in Figure 18. Finally, the

Fig. 18: Euler angles simulated with SMC using Bézier (blue
line) and Dubins (orange line) curves trajectory planners

velocity profiles and the results obtained from simulation are
presented in figures 19 and 20. For both cases, the vertical
velocity reference is identical. The difference is based on the
north and east velocity references, where a higher accuracy
is achieved with Bézier curves.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes the control and planning approaches
considered for a modelled quadrotor in the MATLAB
Simulink environment. Moreover, some of the system pa-
rameters are experimentally identified, by a model-based
approach. The proposed combination of guidance and con-
trol algorithms is computational efficient and can be easily
translated on a C/C++ code, to be deployed on the on-
board autopilot. Inner and outer loop control scheme are
considered: (1) the inner loop controls the fast dynamics,
guaranteeing robustness and an higher sample time, and (2)
the outer loop for the position dynamics. The altitude control
loop is separately controlled, in order to obtain very accurate

Fig. 19: Velocity profile simulated (blue line) with SMC
using Dubins curves references (dashed red line)

Fig. 20: Velocity profile simulated (blue line) with SMC
using Bézier curves (dashed red line)

precision. Extensive simulations are performed to verify the
performance of the selected controllers, and the combination
with the two approaches for the planner. From the point
of view of the obtained performance, the combination for
Sliding Mode Controller (SMC) and Bézier trajectory plan-
ner show good performance, as depicted by Model-in-the-
Loop simulations. We observe that the the reference velocity
can strongly affect the performance of the selected on-board
software. Note that the main reason of the overshoot on the
Dubins-based trajectory planner is due to the tracking of the
velocity. In a similar way, tracking a reference heading has
an impact on the position accuracy.

As future work, the attitude control system will be im-
proved, introducing disturbances in the definition of the
model and the Linear Quadratic Regulator (LQR) will be
divided into two separate dynamics. An extension to 3D
Dubins and 3D Bézier curves is also a target, including an



higher degree for the Bézier curves.
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APPENDIX I
LINEAR MODEL

The matrices corresponding to the linear model of the
quadrotor can be seen hereafter:

A =



0 0 0 0 1 0 0 0 0 0
... 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −g 0 0 0 0 0 0 0

... g 0 0 0 0 0 0 0 0
0 · · · · · · 0


12×12

(19)

B =



0 · · · · · · 0
...

...
0 · · · · · · 0
1
m 0 0 0 0 0
0 1

m 0 0 0 0
0 0 1

m 0 0 0
0 0 0 c3 0 c4
0 0 0 0 c7 0
0 0 0 c4 0 c9


12×6

(20)

Matrices C and D correspond to an identity matrix with the
dimensions of A and a zeros matrix with the dimensions of
B, respectively.
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