5 research outputs found

    Mechanism of Gene Regulation by Coding PolyA Tracks

    Get PDF
    Regulation of gene expression is essential for cellular development and survival. The great variety and complexity of regulatory mechanisms underscores this fact. Messenger RNA stability and translational efficiency are often key determinants of gene expression. mRNA surveillance pathways, discovered for their role in degradation of aberrant mRNA, are now known to be instrumental in the regulation of physiologically correct mRNA stability. Thus, the study of cis elements in a transcript that can induce mRNA surveillance pathways has become an area of particular interest. Here I report on the mechanism of gene regulation by coding polyA tracks, defined as a sequence of at least 12 consecutive nucleotides in which all but one are adenosines. When a polyA track is present in the open reading frame of an mRNA, the translating ribosome stalls and frameshifts due to interactions with the polyA sequence. These events lead to degradation of the transcripts by the mRNA surveillance pathways no-go decay and nonsense mediated decay. As a consequence of the polyA sequence, less protein is expressed from these transcripts. Approximately 2% of genes in most genomes, including humans, contain a polyA track and are potentially regulated by this mechanism

    Plasmodium falciparum translational machinery condones polyadenosine repeats

    Get PDF
    Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway

    Rapid generation of hypomorphic mutations

    Get PDF
    Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels

    Protein Synthesis Adaptation to the AU-Rich Transcriptome of Plasmodium falciparum

    Get PDF
    The process of protein synthesis whereby a messenger RNA is decoded into an amino acid chainis conserved among the domains. Fastidious protein synthesis is necessary for organism survival. However, exceptions negatively affecting the mRNA translation cycle – inadvertently or by design – may occur. Polyadenosine tracts are one such motif causing ribosomal stalling and frameshifting in almost all organisms tested thus far; save Plasmodium spp. Thus, with ~60% of their protein-coding genome harboring polyadenosine tracts, the elucidation of such paradigm-breaking adaptations enabling Plasmodium spp. to translate this typically problematic motif without issue is salient from both basic science and clinical perspectives. Using biochemical and structural approaches, I report on the parasite ability to express polyA motifs and ribosome alterations enabling polylysine synthesis. The developed PP7-mRIP assay reveals RBP differences among varying mRNA substrates, revealing a previously uncharacterized, parasite-specific AU-rich binding protein bound to polyA tract reporter mRNA. Finally, the parasite exhibits altered binding of the essential ribosomal protein RACK1, vital for translation cap-dependent initiation and quality control activation, that would invariably alter ribosome- associated quality control pathway signaling, ostensibly aiding polyA translation
    corecore