11,390 research outputs found

    PARP-1 regulates DNA repair factor availability.

    Get PDF
    PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance BRCA-ness . These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting

    PARP-1 inhibition influences the oxidative stress response of the human lens

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2) was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361). Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects

    Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes.

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP-1) is a multidomain multifunctional nuclear enzyme involved in the regulation of the chromatin structure and transcription. PARP-1 consists of three functional domains: the N-terminal DNA-binding domain (DBD) containing three zinc fingers, the automodification domain (A), and the C-terminal domain, which includes the protein interacting WGR domain (W) and the catalytic (Cat) subdomain responsible for the poly(ADP ribosyl)ating reaction. The mechanisms coordinating the functions of these domains and determining the positioning of PARP-1 in chromatin remain unknown. Using multiple deletional isoforms of PARP-1, lacking one or another of its three domains, as well as consisting of only one of those domains, we demonstrate that different functions of PARP-1 are coordinated by interactions among these domains and their targets. Interaction between the DBD and damaged DNA leads to a short-term binding and activation of PARP-1. This hit and run activation of PARP-1 initiates the DNA repair pathway at a specific point. The long-term chromatin loosening required to sustain transcription takes place when the C-terminal domain of PARP-1 binds to chromatin by interacting with histone H4 in the nucleosome. This long-term activation of PARP-1 results in a continuous accumulation of pADPr, which maintains chromatin in the loosened state around a certain locus so that the transcription machinery has continuous access to DNA. Cooperation between the DBD and C-terminal domain occurs in response to heat shock (HS), allowing PARP-1 to scan chromatin for specific binding sites

    Poly(ADP-Ribose) Polymerase 1 Accelerates Single-Strand Break Repair in Concert with Poly(ADP-Ribose) Glycohydrolase

    Get PDF
    Single-strand breaks are the commonest lesions arising in cells, and defects in their repair are implicated in neurodegenerative disease. One of the earliest events during single-strand break repair (SSBR) is the rapid synthesis of poly(ADP-ribose) (PAR) by poly(ADP-ribose) polymerase (PARP), followed by its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). While the synthesis of poly(ADP-ribose) is important for rapid rates of chromosomal SSBR, the relative importance of poly(ADP-ribose) polymerase 1 (PARP-1) and PARP-2 and of the subsequent degradation of PAR by PARG is unclear. Here we have quantified SSBR rates in human A549 cells depleted of PARP-1, PARP-2, and PARG, both separately and in combination. We report that whereas PARP-1 is critical for rapid global rates of SSBR in human A549 cells, depletion of PARP-2 has only a minor impact, even in the presence of depleted levels of PARP-1. Moreover, we identify PARG as a novel and critical component of SSBR that accelerates this process in concert with PARP-1

    Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a 'DNA-strand break sensor', which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the 'PARP catalytic' signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 A resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors

    Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that plays critical functions in many biological processes, including DNA repair and gene transcription. The main function of PARP-1 is to catalyze the transfer of ADP-ribose units from nicotinamide adenine dinucleotide (NAD<sup>+</sup>) to a large array of acceptor proteins, which comprises histones, transcription factors, as well as PARP-1 itself. We have previously demonstrated that transcription of the PARP-1 gene essentially rely on the opposite regulatory actions of two distinct transcription factors, Sp1 and NFI. In the present study, we examined whether suppression of PARP-1 expression in embryonic fibroblasts derived from PARP-1 knockout mice (PARP-1<sup>-/-</sup>) might alter the expression and/or DNA binding properties of Sp1 and NFI. We also explored the possibility that Sp1 or NFI (or both) may represent target proteins of PARP-1 activity.</p> <p>Results</p> <p>Expression of both Sp1 and NFI was found to be considerably reduced in PARP-1<sup>-/- </sup>cells. Co-immunoprecipitation assays revealed that PARP-1 physically interacts with Sp1 in a DNA-independent manner, but neither with Sp3 nor NFI, in PARP-1<sup>+/+ </sup>cells. In addition, <it>in vitro </it>PARP assays indicated that PARP-1 could catalyze the addition of polymer of ADP-ribose to Sp1, which also translated into a reduction of Sp1 binding to its consensus DNA target site. Transfection of the PARP-1 promoter into both PARP-1<sup>+/+ </sup>and PARP-1<sup>-/- </sup>cells revealed that the lack of PARP-1 expression in PARP-1<sup>-/- </sup>cells also results in a strong increase in PARP-1 promoter activity. This influence of PARP-1 was found to rely on the presence of the Sp1 sites present on the basal PARP-1 promoter as their mutation entirely abolished the increased promoter activity observed in PARP-1<sup>-/- </sup>cells. Subjecting PARP-1<sup>+/+ </sup>cells to an oxidative challenge with hydrogen peroxide to increase PARP-1 activity translated into a dramatic reduction in the DNA binding properties of Sp1. However, its suppression by the inhibitor PJ34 improved DNA binding of Sp1 and led to a dramatic increase in PARP-1 promoter function.</p> <p>Conclusion</p> <p>Our results therefore recognized Sp1 as a target protein of PARP-1 activity, the addition of polymer of ADP-ribose to this transcription factor restricting its positive regulatory influence on gene transcription.</p

    Transcription regulation of TNF-α-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells

    Get PDF
    The original publication is a available at www.oxfordjournals.org.-- 10 pp.[EN] Poly(ADP-ribose) polymerase-1 (PARP-1) has been involved in endothelial cell dysfunction associated with various pathophysiological conditions. The intrinsic mechanism of PARP-1-mediated endothelial cell dysfunction could be related to PARP-1 overactivation, NAD+ consumption and ATP depletion. An alternative way could involve transcription regulation. By using high-density microarrays, we examined early tumor necrosis factor α(TNF- α)- stimulated gene expression profiles in PARP-1+/+ and PARP-1-/- murine heart endothelial cells. TNF-α modulated a significant number of genes in both cell types. We have identified a set of genes whose expression in response to TNF-a is modulated by PARP-1, whereas the expression of others is PARP- 1-independent. Up-regulation of several genes involved in the inflammatory response is hampered in the absence of PARP-1. Moreover, NF-қB-dependent transcriptional activation is partially inhibited in PARP-1-/- compared to PARP-1+/+ cells. However, we found that PARP-1 might also silence transcription of several NF-қB target genes. Overall, our results show that PARP-1 is regulating the expression of genes by the endothelial cells both in a positive and a negative fashion, with the final effects depending on the gene. Individual studies of these genes are now necessary to clarify the intrinsic mechanism by which PARP-1 is controlling transcription and thereby finding out different therapeutic approaches involving PARP-1.A.C. is a recipient of a fellowship from FundaciĂłn SĂ©neca. J.Y. is an Investigator from the RamĂłn y Cajal Program (Spanish Ministerio de Ciencia y TecnologĂ­a). This work was supported by the Instituto de Salud Carlos III Grants PI021138 and C03/02.Peer reviewe

    Identification of Poly (ADP-ribose) Polymerase-1 (PARP-1) as a Novel Kruppel-like Factor 8-interacting and -regulating Protein

    Get PDF
    Kruppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1(PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclearexport. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and-regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions

    Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors

    Get PDF
    The majority of pancreatic ductal adenocarcinomas (PDAC) rely on the mRNA stability factor HuR (ELAV-L1) to drive cancer growth and progression. Here, we show that CRISPR-Cas9–mediated silencing of the HuR locus increases the relative sensitivity of PDAC cells to PARP inhibitors (PARPi). PDAC cells treated with PARPi stimulated translocation of HuR from the nucleus to the cytoplasm, specifically promoting stabilization of a new target, poly (ADP-ribose) glycohydrolase (PARG) mRNA, by binding a unique sequence embedded in its 30 untranslated region. HuR-dependent upregulation of PARG expression facilitated DNA repair via hydrolysis of polyADP-ribose on related repair proteins. Accordingly, strategies to inhibit HuR directly promoted DNA damage accumulation, inefficient PAR removal, and persistent PARP-1 residency on chromatin (PARP-1 trapping). Immunoprecipitation assays demonstrated that the PARP-1 protein binds and posttranslationally modifies HuR in PARPi-treated PDAC cells. In a mouse xenograft model of human PDAC, PARPi monotherapy combined with targeted silencing of HuR significantly reduced tumor growth compared with PARPi therapy alone. Our results highlight the HuR–PARG axis as an opportunity to enhance PARPi-based therapies. ©2017 AACR

    Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death

    Get PDF
    NEDD8 is a ubiquitin‐like protein that activates cullin‐RING E3 ubiquitin ligases (CRLs). Here, we identify a novel role for NEDD8 in regulating the activity of poly(ADP‐ribose) polymerase 1 (PARP‐1) in response to oxidative stress. We show that treatment of cells with H2O2 results in the accumulation of NEDD8 chains, likely by directly inhibiting the deneddylase NEDP1. One chain type, an unanchored NEDD8 trimer, specifically bound to the second zinc finger domain of PARP‐1 and attenuated its activation. In cells in which Nedp1 is deleted, large amounts of tri‐NEDD8 constitutively form, resulting in inhibition of PARP‐1 and protection from PARP‐1‐dependent cell death. Surprisingly, these NEDD8 trimers are additionally acetylated, as shown by mass spectrometry analysis, and their binding to PARP‐1 is reduced by the overexpression of histone de‐acetylases, which rescues PARP‐1 activation. Our data suggest that trimeric, acetylated NEDD8 attenuates PARP‐1 activation after oxidative stress, likely to delay the initiation of PARP‐1‐dependent cell death
    • 

    corecore