4 research outputs found

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models

    Advanced tensor based signal processing techniques for wireless communication systems and biomedical signal processing

    Get PDF
    Many observed signals in signal processing applications including wireless communications, biomedical signal processing, image processing, and machine learning are multi-dimensional. Tensors preserve the multi-dimensional structure and provide a natural representation of these signals/data. Moreover, tensors provide often an improved identifiability. Therefore, we benefit from using tensor algebra in the above mentioned applications and many more. In this thesis, we present the benefits of utilizing tensor algebra in two signal processing areas. These include signal processing for MIMO (Multiple-Input Multiple-Output) wireless communication systems and biomedical signal processing. Moreover, we contribute to the theoretical aspects of tensor algebra by deriving new properties and ways of computing tensor decompositions. Often, we only have an element-wise or a slice-wise description of the signal model. This representation of the signal model does not reveal the explicit tensor structure. Therefore, the derivation of all tensor unfoldings is not always obvious. Consequently, exploiting the multi-dimensional structure of these models is not always straightforward. We propose an alternative representation of the element-wise multiplication or the slice-wise multiplication based on the generalized tensor contraction operator. Later in this thesis, we exploit this novel representation and the properties of the contraction operator such that we derive the final tensor models. There exist a number of different tensor decompositions that describe different signal models such as the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC (Canonical Polyadic / PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the PARATUCK2 (PARAfac and TUCker2) decomposition, and the PARAFAC2 (PARAllel FACtors2) decomposition. Among these decompositions, the CP decomposition is most widely spread and used. Therefore, the development of algorithms for the efficient computation of the CP decomposition is important for many applications. The SECSI (Semi-Algebraic framework for approximate CP decomposition via SImultaneaous matrix diagonalization) framework is an efficient and robust tool for the calculation of the approximate low-rank CP decomposition via simultaneous matrix diagonalizations. In this thesis, we present five extensions of the SECSI framework that reduce the computational complexity of the original framework and/or introduce constraints to the factor matrices. Moreover, the PARAFAC2 decomposition and the PARATUCK2 decomposition are usually described using a slice-wise notation that can be expressed in terms of the generalized tensor contraction as proposed in this thesis. We exploit this novel representation to derive explicit tensor models for the PARAFAC2 decomposition and the PARATUCK2 decomposition. Furthermore, we use the PARAFAC2 model to derive an ALS (Alternating Least-Squares) algorithm for the computation of the PARAFAC2 decomposition. Moreover, we exploit the novel contraction properties for element wise and slice-wise multiplications to model MIMO multi-carrier wireless communication systems. We show that this very general model can be used to derive the tensor model of the received signal for MIMO-OFDM (Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao coded MIMO-OFDM, and randomly coded MIMO-OFDM systems. We propose the transmission techniques Khatri-Rao coding and random coding in order to impose an additional tensor structure of the transmit signal tensor that otherwise does not have a particular structure. Moreover, we show that this model can be extended to other multi-carrier techniques such as GFDM (Generalized Frequency Division Multiplexing). Utilizing these models at the receiver side, we design several types for receivers for these systems that outperform the traditional matrix based solutions in terms of the symbol error rate. In the last part of this thesis, we show the benefits of using tensor algebra in biomedical signal processing by jointly decomposing EEG (ElectroEncephaloGraphy) and MEG (MagnetoEncephaloGraphy) signals. EEG and MEG signals are usually acquired simultaneously, and they capture aspects of the same brain activity. Therefore, EEG and MEG signals can be decomposed using coupled tensor decompositions such as the coupled CP decomposition. We exploit the proposed coupled SECSI framework (one of the proposed extensions of the SECSI framework) for the computation of the coupled CP decomposition to first validate and analyze the photic driving effect. Moreover, we validate the effects of scull defects on the measurement EEG and MEG signals by means of a joint EEG-MEG decomposition using the coupled SECSI framework. Both applications show that we benefit from coupled tensor decompositions and the coupled SECSI framework is a very practical tool for the analysis of biomedical data.Zahlreiche messbare Signale in verschiedenen Bereichen der digitalen Signalverarbeitung, z.B. in der drahtlosen Kommunikation, im Mobilfunk, biomedizinischen Anwendungen, der Bild- oder akustischen Signalverarbeitung und dem maschinellen Lernen sind mehrdimensional. Tensoren erhalten die mehrdimensionale Struktur und stellen eine natürliche Darstellung dieser Signale/Daten dar. Darüber hinaus bieten Tensoren oft eine verbesserte Trennbarkeit von enthaltenen Signalkomponenten. Daher profitieren wir von der Verwendung der Tensor-Algebra in den oben genannten Anwendungen und vielen mehr. In dieser Arbeit stellen wir die Vorteile der Nutzung der Tensor-Algebra in zwei Bereichen der Signalverarbeitung vor: drahtlose MIMO (Multiple-Input Multiple-Output) Kommunikationssysteme und biomedizinische Signalverarbeitung. Darüber hinaus tragen wir zu theoretischen Aspekten der Tensor-Algebra bei, indem wir neue Eigenschaften und Berechnungsmethoden für die Tensor-Zerlegung ableiten. Oftmals verfügen wir lediglich über eine elementweise oder ebenenweise Beschreibung des Signalmodells, welche nicht die explizite Tensorstruktur zeigt. Daher ist die Ableitung aller Tensor-Unfoldings nicht offensichtlich, wodurch die multidimensionale Struktur dieser Modelle nicht trivial nutzbar ist. Wir schlagen eine alternative Darstellung der elementweisen Multiplikation oder der ebenenweisen Multiplikation auf der Grundlage des generalisierten Tensor-Kontraktionsoperators vor. Weiterhin nutzen wir diese neuartige Darstellung und deren Eigenschaften zur Ableitung der letztendlichen Tensor-Modelle. Es existieren eine Vielzahl von Tensor-Zerlegungen, die verschiedene Signalmodelle beschreiben, wie die HOSVD (Higher Order Singular Value Decomposition), CP/PARAFAC (Canonical Polyadic/ PARallel FACtors) Zerlegung, die BTD (Block Term Decomposition), die PARATUCK2-(PARAfac und TUCker2) und die PARAFAC2-Zerlegung (PARAllel FACtors2). Dabei ist die CP-Zerlegung am weitesten verbreitet und wird findet in zahlreichen Gebieten Anwendung. Daher ist die Entwicklung von Algorithmen zur effizienten Berechnung der CP-Zerlegung von besonderer Bedeutung. Das SECSI (Semi-Algebraic Framework for approximate CP decomposition via Simultaneaous matrix diagonalization) Framework ist ein effizientes und robustes Werkzeug zur Berechnung der approximierten Low-Rank CP-Zerlegung durch simultane Matrixdiagonalisierung. In dieser Arbeit stellen wir fünf Erweiterungen des SECSI-Frameworks vor, welche die Rechenkomplexität des ursprünglichen Frameworks reduzieren bzw. Einschränkungen für die Faktormatrizen einführen. Darüber hinaus werden die PARAFAC2- und die PARATUCK2-Zerlegung in der Regel mit einer ebenenweisen Notation beschrieben, die sich in Form der allgemeinen Tensor-Kontraktion, wie sie in dieser Arbeit vorgeschlagen wird, ausdrücken lässt. Wir nutzen diese neuartige Darstellung, um explizite Tensormodelle für diese beiden Zerlegungen abzuleiten. Darüber hinaus verwenden wir das PARAFAC2-Modell, um einen ALS-Algorithmus (Alternating Least-Squares) für die Berechnung der PARAFAC2-Zerlegungen abzuleiten. Weiterhin nutzen wir die neuartigen Kontraktionseigenschaften für elementweise und ebenenweise Multiplikationen, um MIMO Multi-Carrier-Mobilfunksysteme zu modellieren. Wir zeigen, dass dieses sehr allgemeine Modell verwendet werden kann, um das Tensor-Modell des empfangenen Signals für MIMO-OFDM- (Multiple- Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao codierte MIMO-OFDM- und zufällig codierte MIMO-OFDM-Systeme abzuleiten. Wir schlagen die Übertragungstechniken der Khatri-Rao-Kodierung und zufällige Kodierung vor, um eine zusätzliche Tensor-Struktur des Sendesignal-Tensors einzuführen, welcher gewöhnlich keine bestimmte Struktur aufweist. Darüber hinaus zeigen wir, dass dieses Modell auf andere Multi-Carrier-Techniken wie GFDM (Generalized Frequency Division Multiplexing) erweitert werden kann. Unter Verwendung dieser Modelle auf der Empfängerseite entwerfen wir verschiedene Typen von Empfängern für diese Systeme, die die traditionellen matrixbasierten Lösungen in Bezug auf die Symbolfehlerrate übertreffen. Im letzten Teil dieser Arbeit zeigen wir die Vorteile der Verwendung von Tensor-Algebra in der biomedizinischen Signalverarbeitung durch die gemeinsame Zerlegung von EEG-(ElectroEncephaloGraphy) und MEG- (MagnetoEncephaloGraphy) Signalen. Diese werden in der Regel gleichzeitig erfasst, wobei sie gemeinsame Aspekte derselben Gehirnaktivität beschreiben. Daher können EEG- und MEG-Signale mit gekoppelten Tensor-Zerlegungen wie der gekoppelten CP Zerlegung analysiert werden. Wir nutzen das vorgeschlagene gekoppelte SECSI-Framework (eine der vorgeschlagenen Erweiterungen des SECSI-Frameworks) für die Berechnung der gekoppelten CP Zerlegung, um zunächst den photic driving effect zu validieren und zu analysieren. Darüber hinaus validieren wir die Auswirkungen von Schädeldefekten auf die Messsignale von EEG und MEG durch eine gemeinsame EEG-MEG-Zerlegung mit dem gekoppelten SECSI-Framework. Beide Anwendungen zeigen, dass wir von gekoppelten Tensor-Zerlegungen profitieren, wobei die Methoden des gekoppelten SECSI-Frameworks erfolgreich zur Analyse biomedizinischer Daten genutzt werden können

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions
    corecore