767 research outputs found

    Applying Winnow to Context-Sensitive Spelling Correction

    Full text link
    Multiplicative weight-updating algorithms such as Winnow have been studied extensively in the COLT literature, but only recently have people started to use them in applications. In this paper, we apply a Winnow-based algorithm to a task in natural language: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting {\it to\/} for {\it too}, {\it casual\/} for {\it causal}, and so on. Previous approaches to this problem have been statistics-based; we compare Winnow to one of the more successful such approaches, which uses Bayesian classifiers. We find that: (1)~When the standard (heavily-pruned) set of features is used to describe problem instances, Winnow performs comparably to the Bayesian method; (2)~When the full (unpruned) set of features is used, Winnow is able to exploit the new features and convincingly outperform Bayes; and (3)~When a test set is encountered that is dissimilar to the training set, Winnow is better than Bayes at adapting to the unfamiliar test set, using a strategy we will present for combining learning on the training set with unsupervised learning on the (noisy) test set.Comment: 9 page

    A Winnow-Based Approach to Context-Sensitive Spelling Correction

    Full text link
    A large class of machine-learning problems in natural language require the characterization of linguistic context. Two characteristic properties of such problems are that their feature space is of very high dimensionality, and their target concepts refer to only a small subset of the features in the space. Under such conditions, multiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good theoretical properties. We present an algorithm combining variants of Winnow and weighted-majority voting, and apply it to a problem in the aforementioned class: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting "to" for "too", "casual" for "causal", etc. We evaluate our algorithm, WinSpell, by comparing it against BaySpell, a statistics-based method representing the state of the art for this task. We find: (1) When run with a full (unpruned) set of features, WinSpell achieves accuracies significantly higher than BaySpell was able to achieve in either the pruned or unpruned condition; (2) When compared with other systems in the literature, WinSpell exhibits the highest performance; (3) The primary reason that WinSpell outperforms BaySpell is that WinSpell learns a better linear separator; (4) When run on a test set drawn from a different corpus than the training set was drawn from, WinSpell is better able than BaySpell to adapt, using a strategy we will present that combines supervised learning on the training set with unsupervised learning on the (noisy) test set.Comment: To appear in Machine Learning, Special Issue on Natural Language Learning, 1999. 25 page

    Quantum-like Representation of Extensive Form Games: Wine Testing Game

    Full text link
    We consider an application of the mathematical formalism of quantum mechanics (QM) outside physics, namely, to game theory. We present a simple game between macroscopic players, say Alice and Bob (or in a more complex form - Alice, Bob and Cecilia), which can be represented in the quantum-like (QL) way -- by using a complex probability amplitude (game's ``wave function'') and noncommutative operators. The crucial point is that games under consideration are so called extensive form games. Here the order of actions of players is important, such a game can be represented by the tree of actions. The QL probabilistic behavior of players is a consequence of incomplete information which is available to e.g. Bob about the previous action of Alice. In general one could not construct a classical probability space underlying a QL-game. This can happen even in a QL-game with two players. In a QL-game with three players Bell's inequality can be violated. The most natural probabilistic description is given by so called contextual probability theory completed by the frequency definition of probability

    PAC-Bayesian Contrastive Unsupervised Representation Learning

    Get PDF
    Contrastive unsupervised representation learning (CURL) is the state-of-the-art technique to learn representations (as a set of features) from unlabelled data. While CURL has collected several empirical successes recently, theoretical understanding of its performance was still missing. In a recent work, Arora et al. (2019) provide the first generalisation bounds for CURL, relying on a Rademacher complexity. We extend their framework to the flexible PAC-Bayes setting, allowing to deal with the non-iid setting. We present PAC-Bayesian generalisation bounds for CURL, which are then used to derive a new representation learning algorithm. Numerical experiments on real-life datasets illustrate that our algorithm achieves competitive accuracy, and yields generalisation bounds with non-vacuous values

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    The big five: Discovering linguistic characteristics that typify distinct personality traits across Yahoo! answers members

    Get PDF
    Indexación: Scopus.This work was partially supported by the project FONDECYT “Bridging the Gap between Askers and Answers in Community Question Answering Services” (11130094) funded by the Chilean Government.In psychology, it is widely believed that there are five big factors that determine the different personality traits: Extraversion, Agreeableness, Conscientiousness and Neuroticism as well as Openness. In the last years, researchers have started to examine how these factors are manifested across several social networks like Facebook and Twitter. However, to the best of our knowledge, other kinds of social networks such as social/informational question-answering communities (e.g., Yahoo! Answers) have been left unexplored. Therefore, this work explores several predictive models to automatically recognize these factors across Yahoo! Answers members. As a means of devising powerful generalizations, these models were combined with assorted linguistic features. Since we do not have access to ask community members to volunteer for taking the personality test, we built a study corpus by conducting a discourse analysis based on deconstructing the test into 112 adjectives. Our results reveal that it is plausible to lessen the dependency upon answered tests and that effective models across distinct factors are sharply different. Also, sentiment analysis and dependency parsing proven to be fundamental to deal with extraversion, agreeableness and conscientiousness. Furthermore, medium and low levels of neuroticism were found to be related to initial stages of depression and anxiety disorders. © 2018 Lithuanian Institute of Philosophy and Sociology. All rights reserved.https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/275

    Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation

    Full text link
    Good data augmentation is one of the key factors that lead to the empirical success of self-supervised representation learning such as contrastive learning and masked language modeling, yet theoretical understanding of its role in learning good representations remains limited. Recent work has built the connection between self-supervised learning and approximating the top eigenspace of a graph Laplacian operator. Learning a linear probe on top of such features can naturally be connected to RKHS regression. In this work, we use this insight to perform a statistical analysis of augmentation-based pretraining. We start from the isometry property, a key geometric characterization of the target function given by the augmentation. Our first main theorem provides, for an arbitrary encoder, near tight bounds for both the estimation error incurred by fitting the linear probe on top of the encoder, and the approximation error entailed by the fitness of the RKHS the encoder learns. Our second main theorem specifically addresses the case where the encoder extracts the top-d eigenspace of a Monte-Carlo approximation of the underlying kernel with the finite pretraining samples. Our analysis completely disentangles the effects of the model and the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance on synthetic and real datasets.Comment: 33 page
    • …
    corecore