CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The big five: Discovering linguistic characteristics that typify distinct personality traits across Yahoo! answers members
Authors
A. Figueroa
N. Olivares
L.M. Vivanco
Publication date
1 January 2018
Publisher
'Instituto Politecnico Nacional/Centro de Investigacion en Computacion'
Doi
Abstract
Indexación: Scopus.This work was partially supported by the project FONDECYT “Bridging the Gap between Askers and Answers in Community Question Answering Services” (11130094) funded by the Chilean Government.In psychology, it is widely believed that there are five big factors that determine the different personality traits: Extraversion, Agreeableness, Conscientiousness and Neuroticism as well as Openness. In the last years, researchers have started to examine how these factors are manifested across several social networks like Facebook and Twitter. However, to the best of our knowledge, other kinds of social networks such as social/informational question-answering communities (e.g., Yahoo! Answers) have been left unexplored. Therefore, this work explores several predictive models to automatically recognize these factors across Yahoo! Answers members. As a means of devising powerful generalizations, these models were combined with assorted linguistic features. Since we do not have access to ask community members to volunteer for taking the personality test, we built a study corpus by conducting a discourse analysis based on deconstructing the test into 112 adjectives. Our results reveal that it is plausible to lessen the dependency upon answered tests and that effective models across distinct factors are sharply different. Also, sentiment analysis and dependency parsing proven to be fundamental to deal with extraversion, agreeableness and conscientiousness. Furthermore, medium and low levels of neuroticism were found to be related to initial stages of depression and anxiety disorders. © 2018 Lithuanian Institute of Philosophy and Sociology. All rights reserved.https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/275
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repositorio.unab.cl:ria/11...
Last time updated on 01/04/2020