688 research outputs found

    Prime Graphs and Exponential Composition of Species

    Get PDF
    In this paper, we enumerate prime graphs with respect to the Cartesian multiplication of graphs. We use the unique factorization of a connected graph into the product of prime graphs given by Sabidussi to find explicit formulas for labeled and unlabeled prime graphs. In the case of species, we construct the exponential composition of species based on the arithmetic product of species of Maia and M\'endez and the quotient species, and express the species of connected graphs as the exponential composition of the species of prime graphs.Comment: 30 pages, 7 figures, 1 tabl

    The number of distinguishing colorings of a Cartesian product graph

    Full text link
    A vertex coloring is called distinguishing if the identity is the only automorphism that can preserve it. The distinguishing threshold θ(G)\theta(G) of a graph GG is the minimum number of colors kk required that any arbitrary kk-coloring of GG is distinguishing. In this paper, we calculate the distinguishing threshold of a Cartesian product graph. Moreover, we calculate the number of non-equivalent distinguishing colorings of grids.Comment: 11 pages, 4 figure

    Direct Product Primality Testing of Graphs is GI-hard

    Full text link
    We investigate the computational complexity of the graph primality testing problem with respect to the direct product (also known as Kronecker, cardinal or tensor product). In [1] Imrich proves that both primality testing and a unique prime factorization can be determined in polynomial time for (finite) connected and nonbipartite graphs. The author states as an open problem how results on the direct product of nonbipartite, connected graphs extend to bipartite connected graphs and to disconnected ones. In this paper we partially answer this question by proving that the graph isomorphism problem is polynomial-time many-one reducible to the graph compositeness testing problem (the complement of the graph primality testing problem). As a consequence of this result, we prove that the graph isomorphism problem is polynomial-time Turing reducible to the primality testing problem. Our results show that connectedness plays a crucial role in determining the computational complexity of the graph primality testing problem

    On the degree conjecture for separability of multipartite quantum states

    Full text link
    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for {\it pure} multipartite quantum states, using the modified tensor product of graphs defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm we mean that the execution time of this algorithm increases as a polynomial in m,m, where mm is the number of parts of the quantum system. We give a counter-example to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.Comment: 17 pages, 3 figures. Comments are welcom
    corecore