12 research outputs found

    NPA-BT: A Network Performance Aware BitTorrent Traffic Optimization Mechanism

    Full text link

    Reducing BitTorrent Download Time via Handshake-Based Switching

    Get PDF
    Peer-to-peer networking overcomes the single point of failure and bandwidth limitations inherent to the centralized server model of file-sharing. It is both a popular means of sharing digital content and a major consumer of internet traffic, with BitTorrent being the most-used protocol. As such, significant research has gone into improving peer-to-peer performance in order to reduce both download times and networking costs. One aspect that can affect performance is the client’s selection of peers to download from, as the time spent downloading from even a single poor-performing peer can impact the overall download duration. A recent peer selection strategy explored having a client use historical knowledge acquired through third-party sources, as well as its own first-hand experience with previously visited peers, as a means of selecting likely good-performers, coupled with a peer switching strategy that replaced peers whose post-selection downloads exhibited poor performance contrary to what historical knowledge suggested in order to limit the time spent downloading from said poor-performers Though this tactic demonstrated reduced download times compared to various past works, it still suffered from poor peer selection due to its historical knowledge not necessarily reflecting the current state of the peers. This work introduced and examined an enhancement to this hybrid peer selection and switching strategy by adding current intelligence regarding a peer’s available bandwidth, all the while avoiding the additional network costs associated with performing on-the-fly probing or querying techniques utilized by other peer selection strategies to benchmark prospective peers. With such on-the-fly knowledge about a peer’s current bandwidth availability, this new enhanced strategy quickly replaced poor performers without waiting for downloads to be performed and subsequently benchmarked, resulting in reduced overall peer-to-peer download times. The results of adding this pre-download peer switching enhancement demonstrated improved download performance, particularly in early file transfer runs. However, as more runs occurred and the benefits of the original strategy’s historical knowledge became more pronounced, the time savings gained from this new enhancement diminished

    Reducing the Download Time in Stochastic P2P Content Delivery Networks by Improving Peer Selection

    Get PDF
    Peer-to-peer (P2P) applications have become a popular method for obtaining digital content. Recent research has shown that the amount of time spent downloading from a poor performing peer effects the total download duration. Current peer selection strategies attempt to limit the amount of time spent downloading from a poor performing peer, but they do not use both advanced knowledge and service capacity after the connection has been made to aid in peer selection. Advanced knowledge has traditionally been obtained from methods that add additional overhead to the P2P network, such as polling peers for service capacity information, using round trip time techniques to calculate the distance between peers, and by using tracker peers. This work investigated the creation of a new download strategy that replaced the random selection of peers with a method that selects server peers based on historic service capacity and ISP in order to further reduce the amount of time needed to complete a download session. Peer-to-peer (P2P) applications have become a popular method for obtaining digital content. Recent research has shown that the amount of time spent downloading from a poor performing peer effects the total download duration. Current peer selection strategies attempt to limit the amount of time spent downloading from a poor performing peer, but they do not use both advanced knowledge and service capacity after the connection has been made to aid in peer selection. Advanced knowledge has traditionally been obtained from methods that add additional overhead to the P2P network, such as polling peers for service capacity information, using round trip time techniques to calculate the distance between peers, and by using tracker peers. This work investigated the creation of a new download strategy that replaced the random selection of peers with a method that selects server peers based on historic service capacity and ISP in order to further reduce the amount of time needed to complete a download session. The results of this new historic based peer selection strategy have shown that there are benefits in using advanced knowledge to select peers and only replacing the worst performing peers. This new approach showed an average download duration improvement of 16.6% in the single client simulation and an average cross ISP traffic reduction of 55.17% when ISPs were participating in cross ISP throttling. In the multiple clients simulation the new approach showed an average download duration improvement of 53.31% and an average cross ISP traffic reduction of 88.83% when ISPs were participating in cross ISP throttling. This new approach also significantly improved the consistency of the download duration between download sessions allowing for the more accurate prediction of download times

    Large-scale sensor-rich video management and delivery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A proposal for secured, efficient and scalable layer 2 network virtualisation mechanism

    Get PDF
    El contenidos de los capítulos 3 y 4 está sujeto a confidencialidad. 291 p.La Internet del Futuro ha emergido como un esfuerzo investigador para superar estas limitaciones identificadas en la actual Internet. Para ello es necesario investigar en arquitecturas y soluciones novedosas (evolutivas o rompedoras), y las plataformas de experimentación surgen para proporcionar un entorno realista para validar estas nuevas propuestas a gran escala.Debido a la necesidad de compartir la misma infraestructura y recursos para testear simultáneamente diversas propuestas de red, la virtualización de red es la clave del éxito. Se propone una nueva taxonomía para poder analizar y comparar las diferentes propuestas. Se identifican tres tipos: el Nodo Virtual (vNode), la Virtualización posibilitada por SDN (SDNeV) y el overlay.Además, se presentan las plataformas experimentales más relevantes, con un foco especial en la forma en la que cada una de ellas permite la investigación en propuestas de red, las cuales no cumplen todos estos requisitos impuestos: aislamiento, seguridad, flexibilidad, escalabilidad, estabilidad, transparencia, soporte para la investigación en propuestas de red. Por lo tanto, una nueva plataforma de experimentación ortogonal a la experimentación es necesaria.Las principales contribuciones de esta tesis, sustentadas sobre tecnología SDN y NFV, son también los elementos clave para construir la plataforma de experimentación: la Virtualización de Red basada en Prefijos de Nivel 2 (Layer 2 Prefix-based Network Virtualisation, L2PNV), un Protocolo para la Configuración de Direcciones MAC (MAC Address Configuration Protocol, MACP), y un sistema de Control de Acceso a Red basado en Flujos (Flow-based Network Access Control, FlowNAC).Como resultado, se ha desplegado en la Universidad del Pais Vasco (UPV/EHU) una nueva plataforma experimental, la Plataforma Activada por OpenFlow de EHU (EHU OpenFlow Enabled Facility, EHU-OEF), para experimentar y validar estas propuestas realizadas

    Cross-Layer-Optimierungen für WLAN-Mesh-Netzwerke

    Get PDF
    Gegenstand dieser Arbeit ist es, das Verhalten von IEEE-802.11s-Mesh-Netzwerken in der Praxis zu untersuchen und Strategien und Lösungen zu entwickeln, durch die einerseits die Administrierbarkeit und Skalierbarkeit komplexer Mesh-Backbones erhöht werden und andererseits verteilte Anwendungen die darunter liegende Netzwerkstruktur gezielt berücksichtigen können, um das vorhandene Datendurchsatzpotential effizient zu nutzen.The aim of this thesis is to investigate the practical behavior of IEEE 802.11s mesh networks and to develop strategies and solutions that, on the one hand, increase the scalability and manageability of complex mesh backbones and, on the other hand, enable distributed applications to explicitly consider the underlying network structure, allowing them to utilize the available network capacity efficiently

    Experimenting with P2P traffic optimization for wireless mesh networks in a federated OMF-PlanetLab environment

    No full text
    The ultimate success of the Wireless Mesh Network paradigm (WMN) in large scale deployments depends on the ability to test it in real world scenarios. A typical application scenario which is worth to be investigated in such a context is peer-to-peer traffic management. The creation of large scale testbeds for evaluating wireless mesh technologies and protocols, and for testing their ability to support real world applications in realistic environments, is then a crucial step. OMF (cOntrol and Management Framework) is a well-established control, measurement, and management framework for wireless testbeds. In this paper we present how we integrated an OMF-based wireless testbed in the planetary-scale PlanetLab testbed, making it possible for PlanetLab users to run experiments spanning on both PlanetLab and an OMF-based wireless testbed. In order to demonstrate the usefulness of such an integrated scenario, we tested on it an innovative peer-to-peer traffic optimization technique for the BitTorrent file sharing application. The possibility of running this kind of experiments highlighted several real-world issues which could be investigated thanks to our hybrid experimental scenario. © 2011 IEEE
    corecore