5,334 research outputs found

    A Polynomial Time Algorithm for Deciding Branching Bisimilarity on Totally Normed BPA

    Full text link
    Strong bisimilarity on normed BPA is polynomial-time decidable, while weak bisimilarity on totally normed BPA is NP-hard. It is natural to ask where the computational complexity of branching bisimilarity on totally normed BPA lies. This paper confirms that this problem is polynomial-time decidable. To our knowledge, in the presence of silent transitions, this is the first bisimilarity checking algorithm on infinite state systems which runs in polynomial time. This result spots an instance in which branching bisimilarity and weak bisimilarity are both decidable but lie in different complexity classes (unless NP=P), which is not known before. The algorithm takes the partition refinement approach and the final implementation can be thought of as a generalization of the previous algorithm of Czerwi\'{n}ski and Lasota. However, unexpectedly, the correctness of the algorithm cannot be directly generalized from previous works, and the correctness proof turns out to be subtle. The proof depends on the existence of a carefully defined refinement operation fitted for our algorithm and the proposal of elaborately developed techniques, which are quite different from previous works.Comment: 32 page

    The Complexity of Reasoning with FODD and GFODD

    Full text link
    Recent work introduced Generalized First Order Decision Diagrams (GFODD) as a knowledge representation that is useful in mechanizing decision theoretic planning in relational domains. GFODDs generalize function-free first order logic and include numerical values and numerical generalizations of existential and universal quantification. Previous work presented heuristic inference algorithms for GFODDs and implemented these heuristics in systems for decision theoretic planning. In this paper, we study the complexity of the computational problems addressed by such implementations. In particular, we study the evaluation problem, the satisfiability problem, and the equivalence problem for GFODDs under the assumption that the size of the intended model is given with the problem, a restriction that guarantees decidability. Our results provide a complete characterization placing these problems within the polynomial hierarchy. The same characterization applies to the corresponding restriction of problems in first order logic, giving an interesting new avenue for efficient inference when the number of objects is bounded. Our results show that for Σk\Sigma_k formulas, and for corresponding GFODDs, evaluation and satisfiability are Σkp\Sigma_k^p complete, and equivalence is Πk+1p\Pi_{k+1}^p complete. For Πk\Pi_k formulas evaluation is Πkp\Pi_k^p complete, satisfiability is one level higher and is Σk+1p\Sigma_{k+1}^p complete, and equivalence is Πk+1p\Pi_{k+1}^p complete.Comment: A short version of this paper appears in AAAI 2014. Version 2 includes a reorganization and some expanded proof

    The Complexity of Relating Quantum Channels to Master Equations

    Get PDF
    Completely positive, trace preserving (CPT) maps and Lindblad master equations are both widely used to describe the dynamics of open quantum systems. The connection between these two descriptions is a classic topic in mathematical physics. One direction was solved by the now famous result due to Lindblad, Kossakowski Gorini and Sudarshan, who gave a complete characterisation of the master equations that generate completely positive semi-groups. However, the other direction has remained open: given a CPT map, is there a Lindblad master equation that generates it (and if so, can we find it's form)? This is sometimes known as the Markovianity problem. Physically, it is asking how one can deduce underlying physical processes from experimental observations. We give a complexity theoretic answer to this problem: it is NP-hard. We also give an explicit algorithm that reduces the problem to integer semi-definite programming, a well-known NP problem. Together, these results imply that resolving the question of which CPT maps can be generated by master equations is tantamount to solving P=NP: any efficiently computable criterion for Markovianity would imply P=NP; whereas a proof that P=NP would imply that our algorithm already gives an efficiently computable criterion. Thus, unless P does equal NP, there cannot exist any simple criterion for determining when a CPT map has a master equation description. However, we also show that if the system dimension is fixed (relevant for current quantum process tomography experiments), then our algorithm scales efficiently in the required precision, allowing an underlying Lindblad master equation to be determined efficiently from even a single snapshot in this case. Our work also leads to similar complexity-theoretic answers to a related long-standing open problem in probability theory.Comment: V1: 43 pages, single column, 8 figures. V2: titled changed; added proof-overview and accompanying figure; 50 pages, single column, 9 figure

    Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata

    Full text link
    We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism

    Branching Bisimilarity on Normed BPA Is EXPTIME-complete

    Full text link
    We put forward an exponential-time algorithm for deciding branching bisimilarity on normed BPA (Bacis Process Algebra) systems. The decidability of branching (or weak) bisimilarity on normed BPA was once a long standing open problem which was closed by Yuxi Fu. The EXPTIME-hardness is an inference of a slight modification of the reduction presented by Richard Mayr. Our result claims that this problem is EXPTIME-complete.Comment: We correct many typing errors, add several remarks and an interesting toy exampl

    Timed Comparisons of Semi-Markov Processes

    Get PDF
    Semi-Markov processes are Markovian processes in which the firing time of the transitions is modelled by probabilistic distributions over positive reals interpreted as the probability of firing a transition at a certain moment in time. In this paper we consider the trace-based semantics of semi-Markov processes, and investigate the question of how to compare two semi-Markov processes with respect to their time-dependent behaviour. To this end, we introduce the relation of being "faster than" between processes and study its algorithmic complexity. Through a connection to probabilistic automata we obtain hardness results showing in particular that this relation is undecidable. However, we present an additive approximation algorithm for a time-bounded variant of the faster-than problem over semi-Markov processes with slow residence-time functions, and a coNP algorithm for the exact faster-than problem over unambiguous semi-Markov processes
    corecore