91,656 research outputs found

    P vs NP

    Full text link
    In this paper, we discuss the NP\mathcal{NP} problem using the Henkin's Theory and the Herbrand Theory in the first-order logic, and prove that P\mathcal{P} is a proper subset of NP\mathcal{NP}

    On inefficient special cases of NP-complete problems

    Get PDF
    AbstractEvery intractable set A has a polynomial complexity core, a set H such that for any P-subset S of A or of Δ€, S∩H is finite. A complexity core H of A is proper if HβŠ†A. It is shown here that if Pβ‰ NP, then every currently known (i.e., either invertibly paddable or k-creative) NP-complete set A and its complement Δ€ have proper polynomial complexity cores that are nonsparse and are accepted by deterministic machines in time 2cn for some constant c. Turning to the intractable class DEXT=βˆͺc>0DTIME(2cn), it is shown that every set that is β©½pm-complete for DEXT has an infinite proper polynomial complexity core that is nonsparse and recursive

    On W[1]-Hardness as Evidence for Intractability

    Get PDF
    The central conjecture of parameterized complexity states that FPT !=W[1], and is generally regarded as the parameterized counterpart to P !=NP. We revisit the issue of the plausibility of FPT !=W[1], focusing on two aspects: the difficulty of proving the conjecture (assuming it holds), and how the relation between the two classes might differ from the one between P and NP. Regarding the first aspect, we give new evidence that separating FPT from W[1] would be considerably harder than doing the same for P and NP. Our main result regarding the relation between FPT and W[1] states that the closure of W[1] under relativization with FPT-oracles is precisely the class W[P], implying that either FPT is not low for W[1], or the W-Hierarchy collapses. This theorem also has consequences for the A-Hierarchy (a parameterized version of the Polynomial Hierarchy), namely that unless W[P] is a subset of some level A[t], there are structural differences between the A-Hierarchy and the Polynomial Hierarchy. We also prove that under the unlikely assumption that W[P] collapses to W[1] in a specific way, the collapse of any two consecutive levels of the A-Hierarchy implies the collapse of the entire hierarchy to a finite level; this extends a result of Chen, Flum, and Grohe (2005). Finally, we give weak (oracle-based) evidence that the inclusion W[t]subseteqA[t] is strict for t>1, and that the W-Hierarchy is proper. The latter result answers a question of Downey and Fellows (1993)

    Convexity theorems for semisimple symmetric spaces

    Full text link
    We prove a remarkable generalization of a convexity theorem for semisimple symmetric spaces G/H established earlier in 1986 by the second named author. The latter result generalized Kostant's non-linear convexity theorem for the Iwasawa decomposition of a real semisimple Lie group. The present generalization involves Iwasawa decompositions related to minimal parabolic subgroups of G of arbitrary type instead of the particular type relative to H considered in 1986.Comment: LaTeX, 52 pages, v2 contains minor corrections and modification

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201
    • …
    corecore