5 research outputs found

    Effects of change propagation resulting from adaptive preprocessing in multicomponent predictive systems

    Get PDF
    Predictive modelling is a complex process that requires a number of steps to transform raw data into predictions. Preprocessing of the input data is a key step in such process, and the selection of proper preprocessing methods is often a labour intensive task. Such methods are usually trained offline and their parameters remain fixed during the whole model deployment lifetime. However, preprocessing of non-stationary data streams is more challenging since the lack of adaptation of such preprocessing methods may degrade system performance. In addition, dependencies between different predictive system components make the adaptation process more challenging. In this paper we discuss the effects of change propagation resulting from using adaptive preprocessing in a Multicomponent Predictive System (MCPS). To highlight various issues we present four scenarios with different levels of adaptation. A number of experiments have been performed with a range of datasets to compare the prediction error in all four scenarios. Results show that well managed adaptation considerably improves the prediction performance. However, the model can become inconsistent if adaptation in one component is not correctly propagated throughout the rest of system components. Sometimes, such inconsistency may not cause an obvious deterioration in the system performance, therefore being difficult to detect. In some other cases it may even lead to a system failure as was observed in our experiments

    Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms

    Get PDF
    Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) 1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector

    Adaptive machine learning for automated modeling of residential prosumer agents

    Get PDF
    An efficient participation of prosumers in power system management depends on the quality of information they can obtain. Prosumers actions can be performed by automated agents that are operating in time-changing environments. Therefore, it is essential for them to deal with data stream problems in order to make reliable decisions based on the most accurate information. This paper provides an in-depth investigation of data and concept drift issues in accordance with residential prosumer agents. Additionally, the adaptation techniques, forgetting mechanisms, and learning strategies employed to handle these issues are explored. Accordingly, an approach is proposed to adapt the prosumer agent models to overcome the gradual and sudden concept drift concurrently. The suggested method is based on triggered adaptation techniques and performance-based forgetting mechanism. The results obtained in this study demonstrate that the proposed approach is capable of constructing efficient prosumer agents models with regard to the concept drift proble
    corecore