1,571 research outputs found

    Efficient SAR Raw Data Compression in Frequency Domain

    Get PDF
    SAR raw data compression is necessary to reduce huge amounts of SAR data for a memory on board a satellite, space shuttle or aircraft and for later downlink to a ground station. In view of interferometric and polarimetric applications for SAR data, it becomes more and more important to pay attention to phase errors caused by data compression. Herein, a detailed comparison of block adaptive quantization in time domain (BAQ) and in frequency domain (FFT-BAQ) is given. Inclusion of raw data compression in the processing chain allows an efficient use of the FFT-BAQ and makes implementation for on-board data compression feasible. The FFT-BAQ outperforms the BAQ in terms of signal-to-quantization noise ratio and phase error and allows a direct decimation of the oversampled data equivalent to FIR-filtering in time domain. Impacts on interferometric phase and coherency are also given

    Sampling and Reconstruction of Spatial Fields using Mobile Sensors

    Get PDF
    Spatial sampling is traditionally studied in a static setting where static sensors scattered around space take measurements of the spatial field at their locations. In this paper we study the emerging paradigm of sampling and reconstructing spatial fields using sensors that move through space. We show that mobile sensing offers some unique advantages over static sensing in sensing time-invariant bandlimited spatial fields. Since a moving sensor encounters such a spatial field along its path as a time-domain signal, a time-domain anti-aliasing filter can be employed prior to sampling the signal received at the sensor. Such a filtering procedure, when used by a configuration of sensors moving at constant speeds along equispaced parallel lines, leads to a complete suppression of spatial aliasing in the direction of motion of the sensors. We analytically quantify the advantage of using such a sampling scheme over a static sampling scheme by computing the reduction in sampling noise due to the filter. We also analyze the effects of non-uniform sensor speeds on the reconstruction accuracy. Using simulation examples we demonstrate the advantages of mobile sampling over static sampling in practical problems. We extend our analysis to sampling and reconstruction schemes for monitoring time-varying bandlimited fields using mobile sensors. We demonstrate that in some situations we require a lower density of sensors when using a mobile sensing scheme instead of the conventional static sensing scheme. The exact advantage is quantified for a problem of sampling and reconstructing an audio field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised Oct 201

    Fourier Phase Retrieval with a Single Mask by Douglas-Rachford Algorithm

    Full text link
    Douglas-Rachford (DR) algorithm is analyzed for Fourier phase retrieval with a single random phase mask. Local, geometric convergence to a unique fixed point is proved with numerical demonstration of global convergence
    • …
    corecore