41 research outputs found

    Interference Mitigating Satellite Broadcast Receiver using Reduced Complexity List-Based Detection in Correlated Noise

    Get PDF
    The recent commercial trends towards using smaller dish antennas for satellite receivers, and the growing density of broadcasting satellites, necessitate the application of robust adjacent satellite interference (ASI) cancellation schemes. This orbital density growth along with the wider beamwidth of a smaller dish have imposed an overloaded scenario at the satellite receiver, where the number of transmitting satellites exceeds the number of receiving elements at the dish antenna. To ensure successful operation in this practical scenario, we propose a satellite receiver that enhances signal detection from the desired satellite by mitigating the interference from neighboring satellites. Towards this objective, we propose a reduced complexity list-based group-wise search detection (RC-LGSD) receiver under the assumption of spatially correlated additive noise. To further enhance detection performance, the proposed satellite receiver utilizes a newly designed whitening filter to remove the spatial correlation amongst the noise parameters, while also applying a preprocessor that maximizes the signal-to-interference-plus-noise ratio (SINR). Extensive simulations under practical scenarios show that the proposed receiver enhances the performance of satellite broadcast systems in the presence of ASI compared to existing methods

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    The Road to Next-Generation Multiple Access: A 50-Year Tutorial Review

    Full text link
    The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.Comment: 43 pages, 38 figures; Submitted to Proceedings of the IEE

    Evolution of NOMA Toward Next Generation Multiple Access (NGMA) for 6G

    Full text link
    Due to the explosive growth in the number of wireless devices and diverse wireless services, such as virtual/augmented reality and Internet-of-Everything, next generation wireless networks face unprecedented challenges caused by heterogeneous data traffic, massive connectivity, and ultra-high bandwidth efficiency and ultra-low latency requirements. To address these challenges, advanced multiple access schemes are expected to be developed, namely next generation multiple access (NGMA), which are capable of supporting massive numbers of users in a more resource- and complexity-efficient manner than existing multiple access schemes. As the research on NGMA is in a very early stage, in this paper, we explore the evolution of NGMA with a particular focus on non-orthogonal multiple access (NOMA), i.e., the transition from NOMA to NGMA. In particular, we first review the fundamental capacity limits of NOMA, elaborate on the new requirements for NGMA, and discuss several possible candidate techniques. Moreover, given the high compatibility and flexibility of NOMA, we provide an overview of current research efforts on multi-antenna techniques for NOMA, promising future application scenarios of NOMA, and the interplay between NOMA and other emerging physical layer techniques. Furthermore, we discuss advanced mathematical tools for facilitating the design of NOMA communication systems, including conventional optimization approaches and new machine learning techniques. Next, we propose a unified framework for NGMA based on multiple antennas and NOMA, where both downlink and uplink transmissions are considered, thus setting the foundation for this emerging research area. Finally, several practical implementation challenges for NGMA are highlighted as motivation for future work.Comment: 34 pages, 10 figures, a survey paper accepted by the IEEE JSAC special issue on Next Generation Multiple Acces

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out
    corecore