95,785 research outputs found

    Overlapping Community Detection Extended from Disjoint Community Structure

    Get PDF
    Community detection is a hot issue in the study of complex networks. Many community detection algorithms have been put forward in different fields. But most of the existing community detection algorithms are used to find disjoint community structure. In order to make full use of the disjoint community detection algorithms to adapt to the new demand of overlapping community detection, this paper proposes an overlapping community detection algorithm extended from disjoint community structure by selecting overlapping nodes (ONS-OCD). In the algorithm, disjoint community structure with high qualities is firstly taken as input, then, potential members of each community are identified. Overlapping nodes are determined according to the node contribution to the community. Finally, adding overlapping nodes to all communities they belong to and get the final overlapping community structure. ONS-OCD algorithm reduces the computation of judging overlapping nodes by narrowing the scope of the potential member nodes of each community. Experimental results both on synthetic and real networks show that the community detection quality of ONS-OCD algorithm is better than several other representative overlapping community detection algorithms

    Extension of Modularity Density for Overlapping Community Structure

    Full text link
    Modularity is widely used to effectively measure the strength of the disjoint community structure found by community detection algorithms. Although several overlapping extensions of modularity were proposed to measure the quality of overlapping community structure, there is lack of systematic comparison of different extensions. To fill this gap, we overview overlapping extensions of modularity to select the best. In addition, we extend the Modularity Density metric to enable its usage for overlapping communities. The experimental results on four real networks using overlapping extensions of modularity, overlapping modularity density, and six other community quality metrics show that the best results are obtained when the product of the belonging coefficients of two nodes is used as the belonging function. Moreover, our experiments indicate that overlapping modularity density is a better measure of the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference o

    Evidential Communities for Complex Networks

    Get PDF
    Community detection is of great importance for understand-ing graph structure in social networks. The communities in real-world networks are often overlapped, i.e. some nodes may be a member of multiple clusters. How to uncover the overlapping communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, a novel algorithm to identify overlapping communi-ties in complex networks by a combination of an evidential modularity function, a spectral mapping method and evidential c-means clustering is devised. Experimental results indicate that this detection approach can take advantage of the theory of belief functions, and preforms good both at detecting community structure and determining the appropri-ate number of clusters. Moreover, the credal partition obtained by the proposed method could give us a deeper insight into the graph structure

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm
    • …
    corecore