5 research outputs found

    Spectrum sensing in cognitive radio:use of cyclo-stationary detector

    Get PDF
    Cognitive radio allows unlicensed users to access licensed frequency bands through dynamic spectrum access so as to reduce spectrum scarcity. This requires intelligent spectrum sensing techniques like co-operative sensing which makes use of information from number of users. This thesis investigates the use of cyclo-stationary detector and its simulation in MATLAB for licensed user detection. Cyclo-stationary detector enables operation under low SNR conditions and thus saves the need for consulting more number of users. Simulation results show that implementing co-operative spectrum sensing help in better performance in terms of detection. The cyclo-stationary detector is used for performance evaluation for Digital Video Broadcast-Terrestrial (DVB-T) signals. Generally, DVB-T is specified in IEEE 802.22 standard (first standard based on cognitive radio) in VHF and UHF TV broadcasting spectrum. The thesis is further extended to find the number of optimal users in a scenario to optimize the detection probability and reduce overhead leading to better utilization of resources. The gradient descent algorithm and the particle swarm optimization (PSO) technique are put to use to find an optimum value of threshold. The performance for both these schemes is evaluated to find out which fares better

    Combined Soft Hard Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Providing some techniques to enhance the performance of spectrum sensing in cognitive radio systems while accounting for the cost and bandwidth limitations in practical scenarios is the main objective of this thesis. We focus on an essential element of cooperative spectrum sensing (CSS) which is the data fusion that combines the sensing results to make the final decision. Exploiting the advantage of the superior performance of the soft schemes and the low bandwidth of the hard schemes by incorporating them in cluster based CSS networks is achieved in two different ways. First, a soft-hard combination is employed to propose a hierarchical cluster based spectrum sensing algorithm. The proposed algorithm maximizes the detection performances while satisfying the probability of false alarm constraint. Simulation results of the proposed algorithm are presented and compared with existing algorithms over the Nakagami fading channel. Moreover, the results show that the proposed algorithm outperforms the existing algorithms. In the second part, a low complexity soft-hard combination scheme is suggested by utilizing both one-bit and two-bit schemes to balance between the required bandwidth and the detection performance by taking into account that different clusters undergo different conditions. The scheme allocates a reliability factor proportional to the detection rate to each cluster to combine the results at the Fusion center (FC) by extracting the results of the reliable clusters. Numerical results obtained have shown that a superior detection performance and a minimum overhead can be achieved simultaneously by combining one bit and two schemes at the intra-cluster level while assigning a reliability factor at the inter-cluster level

    Energy-efficient spectrum sensing approaches for cognitive radio systems

    Get PDF
    Designing an energy efficient cooperative spectrum sensing for cognitive radio network is our main research objective in this dissertation. Two different approaches are employed to achieve the goal, clustering and minimizing the number of participating cognitive radio users in the cooperative process. First, using clustering technique, a multilevel hierarchical cluster-based structure spectrum sensing algorithm has been proposed to tackle the balance between cooperation gain and cost by combining two different fusion rules and exploiting the tree structure of the cluster. The algorithm considerably minimizes the reporting overhead while satisfying the detection requirements. Second, based on reducing the number of participating cognitive radio users, primary user protection is considered to develop an energy efficient algorithm for cluster-based cooperative spectrum sensing system. An iterative algorithm with low complexity has been proposed to design energy efficient spectrum sensing for cluster-based cooperative systems. Simulation results show that the proposed algorithm can significantly minimize the number of contributing of cognitive radio users in the collaboration process and can compromise the performance gain and the incurred overhead. Moreover, a variable sensing window size is also considered to propose three novel strategies for energy efficient centralized cooperative spectrum sensing system using the three hard decision fusion rules. The results show that strategies remarkably increase the energy efficiency of the cooperative system; furthermore, it is shown optimality of k out of N rule over other two hard decision fusion rules. Finally, joint optimization of transmission power and sensing time for a single cognitive radio is considered. An iterative algorithm with low computational requirements has been proposed to jointly optimize power and sensing time to maximize the energy efficiency metric. Computer results have shown that the proposed algorithm outperforms those existing works in the literature

    Performance analyses and design for cognitive radios

    Get PDF
    Cognitive radio has been proposed as a promising solution to the conflict between the spectrum scarcity and spectrum under-utilization. As the demand increases for wireless communication services, cognitive radio technology attracts huge attention from both commercial industries and academic researches. The purpose of this thesis is to provide an analytical evaluation of the cognitive radio system performance while taking into consideration of some realistic conditions. Several problems are investigated in this thesis. First, by adopting a dynamic primary user traffic model with one primary user occupancy status change and exponentially distributed channel holding times, its effect on the cognitive radio system performance is evaluated. In the evaluation, the sensing-throughput tradeoff of the cognitive radio is used as the examination criteria, while energy detection is applied during the spectrum sensing. The thesis then takes the investigation further by establishing a primary user multiple changes traffic model which considers multiple primary user occupancy status changes and any reasonable channel holding time distributions. The effect of the primary user multiple changes traffic on the spectrum sensing performance is investigated while the channel holding times are assumed to be exponential, Gamma, Erlang and log-normal distributed. The analytical evaluation of cognitive radio is also carried out from the secondary user transmission perspective, where the performance of the adaptive modulation in cognitive radio system is investigated. The effect of the cognitive radio distinctive features on the performance of both the adaptive continuous rate scheme and the adaptive discrete rate scheme of the adaptive modulation are examined. The BER performance and the link spectral efficiency performance are derived for both schemes. A novel frame structure where the spectrum sensing is performed by using the recovered received secondary frames is also evaluated in this thesis. A realistic scenario which considers the secondary user signal decoding errors is examined for the novel structure, while an ideal upper bound performance is given when the decoding process is assumed perfect. By extending the system to include multiple consecutive secondary frames, the performance of the novel structure is compared to the performance of the traditional frame structure proposed by the IEEE 802.22 WRAN standard. The effect of the primary user multiple changes traffic is also examined for the novel structure. Several major findings are made from the analytical evaluations presented in this thesis. Through numerical examinations, it was shown that, first, the dynamic primary user traffic degrades the performance of cognitive radio systems. Second, the degree of the performance degradation of the cognitive radio systems is related to the number of primary user status changes and the primary user traffic intensity. Different primary user channel holding times distributions also lead to different sensitivities of the system performance to the primary user traffic. Third, cognitive radio distinctive features degrades the performance of the adaptive modulation. When the novel structure is applied for cognitive radio, a higher secondary achievable throughput can be obtained with a limited saturation threshold

    MULTI USER COOPERATION SPECTRUM SENSING IN WIRELESS COGNITIVE RADIO NETWORKS

    Get PDF
    With the rapid proliferation of new wireless communication devices and services, the demand for the radio spectrum is increasing at a rapid rate, which leads to making the spectrum more and more crowded. The limited available spectrum and the inefficiency in the spectrum usage have led to the emergence of cognitive radio (CR) and dynamic spectrum access (DSA) technologies, which enable future wireless communication systems to exploit the empty spectrum in an opportunistic manner. To do so, future wireless devices should be aware of their surrounding radio environment in order to adapt their operating parameters according to the real-time conditions of the radio environment. From this viewpoint, spectrum sensing is becoming increasingly important to new and future wireless communication systems, which is designed to monitor the usage of the radio spectrum and reliably identify the unused bands to enable wireless devices to switch from one vacant band to another, thereby achieving flexible, reliable, and efficient spectrum utilisation. This thesis focuses on issues related to local and cooperative spectrum sensing for CR networks, which need to be resolved. These include the problems of noise uncertainty and detection in low signal to noise ratio (SNR) environments in individual spectrum sensing. In addition to issues of energy consumption, sensing delay and reporting error in cooperative spectrum sensing. In this thesis, we investigate how to improve spectrum sensing algorithms to increase their detection performance and achieving energy efficiency. To this end, first, we propose a new spectrum sensing algorithm based on energy detection that increases the reliability of individual spectrum sensing. In spite of the fact that the energy detection is still the most common detection mechanism for spectrum sensing due to its simplicity. Energy detection does not require any prior knowledge of primary signals, but has the drawbacks of threshold selection, and poor performance due to noise uncertainty especially at low SNR. Therefore, a new adaptive optimal energy detection algorithm (AOED) is presented in this thesis. In comparison with the existing energy detection schemes the detection performance achieved through AOED algorithm is higher. Secondly, as cooperative spectrum sensing (CSS) can give further improvement in the detection reliability, the AOED algorithm is extended to cooperative sensing; in which multiple cognitive users collaborate to detect the primary transmission. The new combined approach (AOED and CSS) is shown to be more reliable detection than the individual detection scheme, where the hidden terminal problem can be mitigated. Furthermore, an optimal fusion strategy for hard-fusion based cognitive radio networks is presented, which optimises sensing performance. Thirdly, the need for denser deployment of base stations to satisfy the estimated high traffic demand in future wireless networks leads to a significant increase in energy consumption. Moreover, in large-scale cognitive radio networks some of cooperative devices may be located far away from the fusion centre, which causes an increase in the error rate of reporting channel, and thus deteriorating the performance of cooperative spectrum sensing. To overcome these problems, a new multi-hop cluster based cooperative spectrum sensing (MHCCSS) scheme is proposed, where only cluster heads are allowed to send their cluster results to the fusion centre via successive cluster heads, based on higher SNR of communication channel between cluster heads. Furthermore, in decentralised CSS as in cognitive radio Ad Hoc networks (CRAHNs), where there is no fusion centre, each cognitive user performs the local spectrum sensing and shares the sensing information with its neighbours and then makes its decision on the spectrum availability based on its own sensing information and the neighbours’ information. However, cooperation between cognitive users consumes significant energy due to heavy communications. In addition to this, each CR user has asynchronous sensing and transmission schedules which add new challenges in implementing CSS in CRAHNs. In this thesis, a new multi-hop cluster based CSS scheme has been proposed for CRAHNs, which can enhance the cooperative sensing performance and reduce the energy consumption compared with other conventional decentralised cooperative spectrum sensing modes
    corecore