8 research outputs found

    Software-defined Design Space Exploration for an Efficient DNN Accelerator Architecture

    Full text link
    Deep neural networks (DNNs) have been shown to outperform conventional machine learning algorithms across a wide range of applications, e.g., image recognition, object detection, robotics, and natural language processing. However, the high computational complexity of DNNs often necessitates extremely fast and efficient hardware. The problem gets worse as the size of neural networks grows exponentially. As a result, customized hardware accelerators have been developed to accelerate DNN processing without sacrificing model accuracy. However, previous accelerator design studies have not fully considered the characteristics of the target applications, which may lead to sub-optimal architecture designs. On the other hand, new DNN models have been developed for better accuracy, but their compatibility with the underlying hardware accelerator is often overlooked. In this article, we propose an application-driven framework for architectural design space exploration of DNN accelerators. This framework is based on a hardware analytical model of individual DNN operations. It models the accelerator design task as a multi-dimensional optimization problem. We demonstrate that it can be efficaciously used in application-driven accelerator architecture design. Given a target DNN, the framework can generate efficient accelerator design solutions with optimized performance and area. Furthermore, we explore the opportunity to use the framework for accelerator configuration optimization under simultaneous diverse DNN applications. The framework is also capable of improving neural network models to best fit the underlying hardware resources

    SPRING: A Sparsity-Aware Reduced-Precision Monolithic 3D CNN Accelerator Architecture for Training and Inference

    Full text link
    CNNs outperform traditional machine learning algorithms across a wide range of applications. However, their computational complexity makes it necessary to design efficient hardware accelerators. Most CNN accelerators focus on exploring dataflow styles that exploit computational parallelism. However, potential performance speedup from sparsity has not been adequately addressed. The computation and memory footprint of CNNs can be significantly reduced if sparsity is exploited in network evaluations. To take advantage of sparsity, some accelerator designs explore sparsity encoding and evaluation on CNN accelerators. However, sparsity encoding is just performed on activation or weight and only in inference. It has been shown that activation and weight also have high sparsity levels during training. Hence, sparsity-aware computation should also be considered in training. To further improve performance and energy efficiency, some accelerators evaluate CNNs with limited precision. However, this is limited to the inference since reduced precision sacrifices network accuracy if used in training. In addition, CNN evaluation is usually memory-intensive, especially in training. In this paper, we propose SPRING, a SParsity-aware Reduced-precision Monolithic 3D CNN accelerator for trainING and inference. SPRING supports both CNN training and inference. It uses a binary mask scheme to encode sparsities in activation and weight. It uses the stochastic rounding algorithm to train CNNs with reduced precision without accuracy loss. To alleviate the memory bottleneck in CNN evaluation, especially in training, SPRING uses an efficient monolithic 3D NVM interface to increase memory bandwidth. Compared to GTX 1080 Ti, SPRING achieves 15.6X, 4.2X and 66.0X improvements in performance, power reduction, and energy efficiency, respectively, for CNN training, and 15.5X, 4.5X and 69.1X improvements for inference

    HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array

    Get PDF
    With the rise of artificial intelligence in recent years, Deep Neural Networks (DNNs) have been widely used in many domains. To achieve high performance and energy efficiency, hardware acceleration (especially inference) of DNNs is intensively studied both in academia and industry. However, we still face two challenges: large DNN models and datasets, which incur frequent off-chip memory accesses; and the training of DNNs, which is not well-explored in recent accelerator designs. To truly provide high throughput and energy efficient acceleration for the training of deep and large models, we inevitably need to use multiple accelerators to explore the coarse-grain parallelism, compared to the fine-grain parallelism inside a layer considered in most of the existing architectures. It poses the key research question to seek the best organization of computation and dataflow among accelerators. In this paper, we propose a solution HyPar to determine layer-wise parallelism for deep neural network training with an array of DNN accelerators. HyPar partitions the feature map tensors (input and output), the kernel tensors, the gradient tensors, and the error tensors for the DNN accelerators. A partition constitutes the choice of parallelism for weighted layers. The optimization target is to search a partition that minimizes the total communication during training a complete DNN. To solve this problem, we propose a communication model to explain the source and amount of communications. Then, we use a hierarchical layer-wise dynamic programming method to search for the partition for each layer.Comment: To appear in the 2019 25th International Symposium on High-Performance Computer Architecture (HPCA 2019
    corecore