7,154 research outputs found

    On the Equivalence of f-Divergence Balls and Density Bands in Robust Detection

    Full text link
    The paper deals with minimax optimal statistical tests for two composite hypotheses, where each hypothesis is defined by a non-parametric uncertainty set of feasible distributions. It is shown that for every pair of uncertainty sets of the f-divergence ball type, a pair of uncertainty sets of the density band type can be constructed, which is equivalent in the sense that it admits the same pair of least favorable distributions. This result implies that robust tests under ff-divergence ball uncertainty, which are typically only minimax optimal for the single sample case, are also fixed sample size minimax optimal with respect to the equivalent density band uncertainty sets.Comment: 5 pages, 1 figure, accepted for publication in the Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    Outlier detection using distributionally robust optimization under the Wasserstein metric

    Full text link
    We present a Distributionally Robust Optimization (DRO) approach to outlier detection in a linear regression setting, where the closeness of probability distributions is measured using the Wasserstein metric. Training samples contaminated with outliers skew the regression plane computed by least squares and thus impede outlier detection. Classical approaches, such as robust regression, remedy this problem by downweighting the contribution of atypical data points. In contrast, our Wasserstein DRO approach hedges against a family of distributions that are close to the empirical distribution. We show that the resulting formulation encompasses a class of models, which include the regularized Least Absolute Deviation (LAD) as a special case. We provide new insights into the regularization term and give guidance on the selection of the regularization coefficient from the standpoint of a confidence region. We establish two types of performance guarantees for the solution to our formulation under mild conditions. One is related to its out-of-sample behavior, and the other concerns the discrepancy between the estimated and true regression planes. Extensive numerical results demonstrate the superiority of our approach to both robust regression and the regularized LAD in terms of estimation accuracy and outlier detection rates

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    On Improving Validity of Deep Neural Networks in Safety Critical Applications

    Get PDF
    Context: Deep learning has proven to be a valuable component in object detection and classification, as the technique has shown an increased performance throughput compared to traditional software algorithms. Deep learning refers to the process, in which an optimisation process learns an algorithm through a set of labeled data, where the researcher defines an architecture rather than the algorithm itself. As the resulting model contains abstract features retrieved through the optimisation process, new unsolved challenges emerge that need to be resolved before deploying these models in safety critical applications. Aim: The aim of this Licentiate thesis has been to study what extensions are necessary to verify deep neural networks. Furthermore, the thesis studies one challenge in detail: how out-of-distribution samples can be detected and excluded. Method:A comparative framework has been constructed to evaluate performance of out-of-distribution detection methods on common ground. To achieve this, the top performing candidates from recent publications were used as a reference snowballing baseline, from which a set of candidates were studied. From the study, common features were studied and included in the comparative framework. Furthermore, the thesis conducted semi-structured interviews to understand the challenges of deploying deep neural networks in industrial safety critical applications. Results: The thesis found that the main issue with deployment is traceability and quality quantification, in the form that deep learning lacks proper descriptions of how to design test cases, training datasets and robustness of the model itself. While deep learning performance is commendable, error tracing is challenging as the abstract features in the do not have any direct connection to the training samples. In addition, the training phase lacks proper measures to quantify diversity within the dataset, especially for the vastly different scenarios that exist in the real world. One safety method studied in this thesis is to utilize an out-of-distribution detector as a safety measure. The benefit of this measure is that it can both identify and mitigate potential hazards. From our literature review it became apparent that each detector was compared with different techniques, hence a framework was constructed that allowed for extensive and fair comparison. In addition, when utilizing the framework, robustness issues of the detector were found, where performance could drastically change depending on small variations in the deep neural network. Future work: Future works recommend testing the outlier detectors on real world scenarios, and show how the detector can be part of a safety strategy argumentation

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin
    • …
    corecore