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Abstract
Context: Deep learning has proven to be a valuable component in object detection
and classification, as the technique has shown an increased performance throughput
compared to traditional software algorithms. Deep learning refers to the process,
in which an optimisation process learns an algorithm through a set of labeled data,
where the researcher defines an architecture rather than the algorithm itself. As
the resulting model contains abstract features retrieved through the optimisation
process, new unsolved challenges emerge that need to be resolved before deploying
these models in safety critical applications.

Aim: The aim of this Licentiate thesis has been to study what extensions are
necessary to verify deep neural networks. Furthermore, the thesis studies one
challenge in detail: how out-of-distribution samples can be detected and excluded.

Method: A comparative framework has been constructed to evaluate performance
of out-of-distribution detection methods on common ground. To achieve this, the top
performing candidates from recent publications were used as a reference snowballing
baseline, from which a set of candidates were studied. From the study, common
features were studied and included in the comparative framework. Furthermore, the
thesis conducted semi-structured interviews to understand the challenges of deploying
deep neural networks in industrial safety critical applications.

Results: The thesis found that the main issue with deployment is traceability
and quality quantification, in the form that deep learning lacks proper descriptions
of how to design test cases, training datasets and robustness of the model itself.
While deep learning performance is commendable, error tracing is challenging as the
abstract features in the do not have any direct connection to the training samples.
In addition, the training phase lacks proper measures to quantify diversity within
the dataset, especially for the vastly different scenarios that exist in the real world.

One safety method studied in this thesis is to utilize an out-of-distribution detector
as a safety measure. The benefit of this measure is that it can both identify and
mitigate potential hazards. From our literature review it became apparent that each
detector was compared with different techniques, hence a framework was constructed
that allowed for extensive and fair comparison. In addition, when utilizing the
framework, robustness issues of the detector were found, where performance could
drastically change depending on small variations in the deep neural network.

Future work: Future works recommend testing the outlier detectors on real world
scenarios, and show how the detector can be part of a safety strategy argumentation.

Keywords: Safety critical applications, deep neural networks, out-of-distribution,
outlier detection.
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Chapter 1

Introduction

In the past decade, automated vehicles have transitioned from an industry vision to
fleet tests with small or limited deployment. This transition has been possible thanks
to advances in the field of computer vision, aided by advances with deep learning.
However, incorporating deep learning into safety critical applications comes with
inherent challenges that need to be addressed before large scale deployment can be
achieved. This thesis has investigated what additional measures of testing are needed
for deep neural networks, and studied the challenge of detecting out-of-distribution
samples more in depth. In this initial chapter the background and research goal will
be presented as well as highlight the gap in testing and verification of deep learning
models.

1.1 Background

Perception has always been a main pillar of autonomy (Pendleton et al. 2017).
Perception refers to processing sensory inputs and aligning it with beliefs or concepts
of knowledge to perceive the surroundings of the system. Perceiving the surroundings
enables the autonomous system to plan a path ahead without interfering with
surrounding objects. Without reliable perception, the system would not be able to
move without the risk of causing accidents. For the automotive industry, improved
perception systems have enabled collision mitigation systems such as City Safety by
Volvo, which reduced the rear-end frontal collisions with 28% (Isaksson-Hellman and
Lindman 2015). In addition, it has enabled additional intelligent functions like lane
departure warning and adaptive cruise control.

Perception systems are commonly created by a combination of sensory inputs,
including radars, ultrasonic, LiDARs and cameras (Rosique et al. 2019). In these
systems, radars and LiDARs are commonly used for short and long range distance
mapping of objects. However, these sensors struggle to determine the validity

1



2 1.1. Background

or object type of their detections. This is mitigated by fusing together distance
estimations with camera imagery, as object detection is more straight forward using
cameras. If the object cannot be categorized, then the detections are considered
of unknown type, which suggests that the system proceeds with additional care.
Knowing the type of object detected allows the perception system to operate more
securely, as knowing an object type will indicate a specific type of motion. For
example, a tree waving in the wind can be perceived to have speed, but the object
type identification will allow the system to accurately determine that the tree will
not move. Furthermore, object classification allows for excluding false detections,
plan around static objects and create a better predicted motion of dynamic objects.

Utilizing image processing to detect and classify objects in the scene has previously
consisted of finding gradients, color patterns or other constructed features to detect
specific objects in the scenery. For example, a simple way to detect road lanes has
been to detect bright colors on the surface that indicate lane markings, followed by
fitting polygons to find the lane curvatures. While these algorithms have proven
sufficient for driving support functions, to enable full autonomous drive the vehicle
perception needs to be far more rigorous.

In 2012 a big breakthrough in computer vision occurred, when AlexNet utilized a
deep neural network to beat traditional image classification algorithms by a large
margin (Krizhevsky et al. 2012) on the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al. 2015). The network highlighted the potential of letting
an algorithm learn directly from data, which features represent best the training
set, and create its own features based on an optimization process. Deep neural
networks, or deep learning as the field is named, refers to a computational graph that
is designed with several connected layers illustrated in Figure 1.1, where each layer
consists of a set of nodes connected to the preceding layer, therefore allowing for a
functional approximation with a large multitude of parameters. Each node in a layer
represent a feature that is used to create more abstract features in the proceeding
layer.

Input Hidden Output

Figure 1.1: An example of a deep neural network with an input layer with three
inputs, one hidden layer with three neurons and one output neuron. Each neuron
consist of inputs, weights, a bias and an activation function, which the neuron
translates into a single output.
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Deployment of a system that includes deep learning models is in general not an
issue for non-safety applications, as long as performance improvements outweigh
potential new unwanted behavior. Recommendation systems and face tagging of
social media images are examples of these types of systems that are beneficial for
the user as the performance is better than for previous algorithms. However, for
safety-critical applications the potential of unwanted behavior may be far more
severe than the potential gain of deployment (Russakovsky et al. 2015). Autonomous
driving is one topic where this debate shows, as flaws in these systems can lead to
fatal events, safety regulations with regards to deployment have to be designed to
ensure deployment only occurs when the system has been proven reasonably safe.

One inherent problem with deep learning models stems from the optimization
process when training the parameters on gathered datasets. As the optimization
consists of minimizing a loss function, the parameters converge with regards to the
existing data, therefore the algorithm can create biases towards specific events in
the scenery (Szegedy et al. 2014; Subramanya et al. 2017). In addition, there might
be undiscovered events that incorrectly trigger the optimization criteria that can
make the algorithm perform undesirable in certain scenarios. While some of these
inconsistencies can be caught by traditional black box testing (Nidhra and Dondeti
2012), additional measures have to be developed, tested and evaluated that mitigate
the impact of undesired or unforeseeable events in systems that include deep neural
networks.

1.2 Research aim

The research of this thesis aims to support systematical testing of deep neural
networks and initial establishment of the inherent challenges of deep learning. As
deep neural networks can consist of a magnitude of parameters received from an
optimization process, researchers need tools that analyze the symbiosis of parameters
rather than the parameters themselves.

One of the desired outcomes of deep learning is to generalize knowledge and thereby
be able to operate outside of the boundaries of its training domain. To achieve this,
the model needs to identify when operates on unfamiliar data, and adjust accordingly.
This is the basis from which the following research questions are drawn:

• RQ1: What testing extension is required for deep neural networks
in safety-critical applications? Safety standard ISO 26262 describes how
functional development is to be conducted with safety in mind. Additionally,
ISO/PAS 21448 were introduced in 2019 to cover faults in the intended func-
tionality of all algorithms, including machine learning. How does this translate
and infer requirements of the deep learning model?
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• RQ2: How can deep learning handle unfamiliar data that lie outside
of the training domain? During training, deep neural networks are generally
only trained on inlier samples, i.e., samples with a desirable outcome. However,
when deployed, these networks can be exposed to previously unseen scenarios
for which the model still has to predict with high certainty. How can these
scenarios be identified?

1.3 Limitations

This thesis only considers convolutional neural networks and image processing. Even
though outlier detection and safety can be an issue in several applications, if the
model robustness can be argued for a convolutional neural network, it can be ex-
trapolated to a traditional feed forward network, as the former is more complex.
The extrapolation can be motivated as image processing suffers from curse of di-
mensionality, a phenomenon that arise in high-dimensional data where the volume
of parameter space rises so fast, that even the largest dataset is considered sparse
(Erfani et al. 2016). In addition, as the research field is still in an infant stage,
research is conducted on publicly available datasets so results can be shared and
replicated by open sourcing code.

1.4 Outline

The rest of this thesis is structured as follows:

Section II: Frame of Reference presents related work in out-of-distribution
detection and inherent flaws of deep neural networks. Furthermore, conventional
testing and safety standards are explored to understand and how these interact with
deep learning.

Section III: Research Approach summarizes the initial thought behind experi-
ments that have been conducted and ties the experiments to the research questions.

Section IV: Summary of Appended Papers gives a short description and
summary of the results of the published papers during the research.

Section V: Discussions puts the results in perspective and compares it to related
research activities and the research questions stated in Section 1.2. Future directions,
limitations and drawbacks of the thesis is also reflected upon.

Section VI: Conclusions is the last chapter and summarizes the key findings in
the results and gives the final remarks of this thesis.



Chapter 2

Frame of Reference

This section covers the related research for the thesis. It aims to explore research
with regards to deep neural network development and how the inherent flaws can
be abused to fool deep nets. In addition, it covers safety from the machine learning
point of view, by identifying verification measures that can be applied in parallel to
development of the actual model.

2.1 Deep learning and perception

To enable autonomous solutions, perception is one key ingredient (Pendleton et al.
2017). Perception is the ability to see, hear or become aware of one’s surrounding
through sensors. For an autonomous vehicle, perception is built with sensors including
radar, cameras and LiDARs to identify objects, road lanes and environmental
descriptions. Rosique et al. (2019) conducted a systematic review of perception
systems and concluded the strength and weaknesses of different types of sensors
and simulators. Regarding object detection and classification, it was concluded that
LiDARs and radars being optimal for detection objects in short and long range
with high accuracy, whilst to determine the object type, the camera is the most
promising sensor. Object classification is a critical task in computer vision that has
been studied for several decades (Karami et al. 2017), where gradient methods have
exhibited good results. In 2012 the field completely changed as Krizhevsky et al.
(2012) utilized deep neural networks to beat its competitors with a large margin for
object classification on the the ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al. 2015)

In its simplest form, a deep neural network is a computational graph with nodes
connected in parallel, series and loops. The goal is to mimic an unknown function
f, by exposing it to observed inputs and desired outputs from which the graph can
learn what direction the information should flow (Ghahramani 2015). The resulting

5



6 2.1. Deep learning and perception

deep network is a probabilistic approximation of the true function f and is considered
adequate if the resulting graph can predict outcomes on unobserved data. The
optimization process tries to maximize the distance of a given sample to the most
nearby hyper-plane, thus the further away the sample lies, the more confident the
model can be that the sample belongs to a specific class (Platt 1999).

Even though advances in image classification have sky-rocketed past years, initially
through Krizhevsky et al. (2012) and then by a multitude of successors, it is still a
controversy on how to properly report uncertainties in these networks. Instead, focus
has been on achieving more accurate approximations of the underlying function f, by
larger networks, new forms of layers and different optimization techniques (Alom et al.
2018). While advances in network structures are needed to achieve smaller, better
or faster networks, the advances lack proper disclosures. A majority of publications
lack proper insight into how to reproduce the results. According to Gundersen and
Kjensmo (2018) only between 20% and 30% of publications fully document all factors
that are required to recreate the results. Even with open sourcing of evaluation code,
there exist cases where the resulting evaluation may vary depending on the model,
which also lacks documentation of how to achieve said model.

As deep neural networks are achieved through an iterative optimization process,
some prominent flaws exist as the optimization process cannot guarantee a global
optimum, nor that the resulting network is a good representation of the training data.
Amodei et al. (2016) summarizes five possible error modes from a reinforcement
point of view, but applies to a majority of deep learning problems:

• Avoiding negative side effects: How can it be ensured that the system does
not cause harm by pursuing its goals.
• Avoiding reward hacking: How can it be ensured that the system does not

abuse glitches in the remaining systems to maximize its performance.
• Scalable oversight: How can the system learn to generalize towards events

that are too expensive or infrequent to evaluate
• Safe exploration: How can the system explore surrounding events without

causing bad repercussions.
• Robustness to distributional shift: How can we ensure that the system

operates robust, when it operates outside of the training environment.

Since a trained model is in general focusing on one task, and one task alone, given an
autonomous agent with its goal of reaching point A, it may take dangerous routes to
fulfil this goal. The issue lies in how this kind of unwanted behavior can be excluded,
without specifying everything the agent may or may not do (as the possible scenarios
to handle quickly grows out of proportion). Furthermore, as it is improbable that
the training set will contain all data variations, how does one allow the agent to
explore surrounding states to the training distribution, even when the given state
has a clear difference in behavior.
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2.2 Safety verification and validation

A general definition of safety is the absence of harmful events that can have catas-
trophic consequences for the user (Avizienis et al. 2004). To achieve safety, the
system goes through minimization of risk and epistemic uncertainty that are related
to unwanted scenarios or events (Möller 2012). Epistemic uncertainty refers to the
systematic uncertainty that is due to lack of complete data. This includes errors
and not enough accurate sensory readings, as well as insufficient training sets unable
to cover the full spectrum of scenarios. A broader definition of safety and safety
concepts for components is given by Grunske et al. 2005. Their research define
concepts such as risk, failure and hazards and discusses established techniques such a
failure modes and effect analysis, and fault tree analysis for safety critical components.
Furthermore, (Grunske et al. 2005) discusses safety analysis on a system-level, which
allows for methods to consider the component as a black-box and only study its
properties and effects on failures occurring on a system-level. Deep learning falls
within this definition, thus robustness can be partly tested with the system-level
approach, but still lacks error traceability and uncertainty estimations within the
component.

How to properly handle uncertainty in deep neural networks is still under debate, as
well as how a certification process can be established for these networks. Uncertainty
in deep learning remains a controversy, as it is rarely covered in state of the art
publications (Bertail et al. 2009). In addition, with regards to certification for
large-scale deployment of autonomous systems, inherent issues have to be solved that
incorporate infrequent failures, which will require a safety strategy that addresses
multi disciplinary concerns including safety engineering, hardware reliability, testing
and more (Koopman and Wagner 2017). Due to this, no starting point exists for a
test oracle, therefore systems that include machine learning are a risk, as no testing
requirements exist for the model nor for the training and validation dataset. Even
though model accuracy is considered a statistical representation that hold over the
test data, it does not guarantee that it holds against data processed during inference.
Hence any claims that a system is completely safe have to argue that the training
dataset contain data for every safety-critical situation (Nguyen et al. 2015).

It is important to stress that the testing challenges are not due to deep neural networks
being considered as black boxes. There exist several studies on testing techniques,
both for white and black box software testing (Nidhra and Dondeti 2012), and which
to use at different stages of the software development. However, there is an inherent
ambiguity when translating a product specification to a graph computation or dataset
definition that are sufficiently detailed to act as the requirements specification. For
machine learning applications, this translation needs to be elaborated upon. Varshney
(2016) suggests four categories that need to be solved on an application-by-application
basis to conduct engineering with safety in mind when it comes to machine learning.
The categories include:
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• Inherently safe design: Design the system such that the potential hazards
are excluded rather than controlled.
• Including safety reserves: Allow for safety margins within the system, such

as redundancy.
• Safe fails: Procedures such that the system remains safe as it fails.
• Procedural safeguards: Measures beyond the core functionality, such as

operator training, audits or warnings.

With most of the suggestions, risk reduction is a key element. Additional frameworks
or suggested methods have been proposed that cover specific cases of deep learning
testing, such as Ribeiro et al. (2016) who proposed a novel explanation technique
with the purpose that each prediction of any classifier has to have an interpretable
and faithful design. The technique revolved around learning a spatial locality around
the prediction by a linear model-agnostic explanation from which features and stimuli
were matched. This can be further developed with backpropagation to find which
feature is responsible for the classification.

Safe deployment refers to a solution or product being deployed in such a manner
that it operates within safety margins and will not cause any safety related issues.
Safety refers to the freedom from unacceptable risk of harmful events that can lead
to physical injury or damage (ISO 26262 Road vehicles — Functional safety 2011).
Additionally, the product has to act in a robust way, such that the function can
persevere through stressful conditions as well as act in a reliable way and perform
the required function for a desired period of time without failure (“IEEE Standard
Glossary of Software Engineering Terminology” 1990).

ISO 26262 is the functional safety standard for road vehicles, consisting of 10
comprehensive parts that covers the full life cycle of safety related automotive
functionality, including development, production and maintenance. The standard
covers verification and validation in Part 4: product development at the system level
and Part 6: product development at the software level. Salay et al. (2017) analysed
Part 6 which consists of 75 software development techniques, that are applied at
different stages of development. Their conclusion was that out of these, 34 applied
at the unit level and the rest at architectural level. Furthermore, they conclude that
the software development techniques are not suitable for solutions that incorporate
deep neural networks or other computational graphs where little insight exists that
supports traceability. A majority of the suggested techniques focus on enlightening
the transparency of the written code through documentation, branch coverage, code
reviews and similar. While these may have an effect on documentation of the deep
neural network design, they do not manage to secure the actual model. In summary,
Salay et al. (2017) suggest safety related systems that include deep neural networks
will have to combat new hazards, new fault and failure modes, and new errors
propagated through the training set.

In the beginning of 2019, the standard SOTIF (ISO/PAS 21448:2019 - Road vehicles
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1 2

3 4

Figure 2.1: Visualization of the four categories representing all scenarios as defined
in (ISO/PAS 21448:2019 - Road vehicles — Safety of the intended functionality
2019). The goal of the SOTIF process is to minimize unsafe states (2 and 3) by
utilizing hazard identification and hazard mitigation techniques.

— Safety of the intended functionality 2019) was released to operate in parallel to
ISO 26262. The goal of the standard is to meet the increasing need of securing
the intended functionality by addressing insufficiencies in the intended functionality
and to foresee potential misuse by users. In contrast to the traditional V-model
that is applied in ISO 26262, SOTIF instead operates by defining four states that
describe all possible states: 1) known safe states, 2) known unsafe states, 3) unknown
unsafe states, and 4) unknown safe states. Thus, the goal of the standard is to
apply hazard identification and hazard mitigation techniques to move states from
3) → 2) and 2) → 1) respectively, see Figure 2.1. Deep neural networks come
with potential new hazards (Salay et al. 2017) as the method contains a multitude
of uncontrolled parameters. However, what exactly constitutes good measures for
hazard identification and mitigation for deep neural networks has yet to be defined.

Borg et al. (2019) conducted a review of verification and validation methods for
machine learning in the automotive domain. Their review found several initial
contributions both on the challenge specification domain as well as proposed solutions.
The challenge fields were found to consist of state-space explosion, robustness, system
engineering, model transparency, requirements specification, test specification and
adversarial attacks. Furthermore, their review also included aspects from interviews
and workshops, thereby enabling the discovery of open questions from the industrial
domain of how to properly classify a system that includes deep neural networks. The
open questions included whether or not deep neural networks should be considered a
software unit or not, if the network errors should be considered hardware failures, how
test coverage from training set comply with ISO 26262 and what key performance
indicators should be used to quantify the quality of the training process to express
the success of fulfilling requirement specifications and verification.

One reoccurring topic is verifying artificial intelligence through formal verification.
Formal verification is the act of proving or disproving an algorithms correctness by
analysing a property for a given system and environment. If a system is disproven,
it is typically provided with a counterexample. Seshia et al. (2016) lists five major
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challenges for achieving formal verification of artificial intelligence. These include
environmental modelling, lack of formal specification, modelling systems that learn,
computational engines for training, testing and verification, and lastly, correct-by-
construction intelligent systems. To mitigate any of these challenges Seshia et al.
(2016) suggest that each challenge is met with a set of principles that include introspect
of the system to gather data of the environment, specify end-to-end behavior with
quantitative metrics to formalize, develop abstractions for explanations of machine
learning components, construct randomized and quantitative formal methods that can
be applied on data generation, testing and verification, and lastly develop techniques
for formal inductive synthesis for artificial intelligence systems.

2.3 Out-of-distribution detection

Out-of-distribution refers to the merged set of anomaly and novelty detection, of
which both topics have been frequently discussed. Anomaly detection refers to
detecting patterns in data that are not coherent with what which the algorithm was
trained for (Chandola et al. 2009). These non-coherent occurrences are commonly
referred to as anomalies, outliers, exceptions, or surprises depending on domain.
Novelty detection act similarly to anomaly detection, with the addition that the
samples are marked and used for further improvements of the algorithm. A common
evaluation technique for detecting outliers has been one-class classification networks,
where the networks sole target is to learn whether or not a sample is of interest
(Khan and Madden 2010).

Chandola et al. (2009) conducted a literature survey on anomaly detection techniques
that spanned multiple research areas and application domains. Regarding image
processing, their findings comprise seven techniques: Mixture of models, regression,
Bayesian networks, support vector machines, neural networks, clustering and nearest
neighbour techniques. Furthermore, they conclude that one major challenge in the
field is the large input size, which causes delays, especially when operating on video.

A review of novelty detection was conducted by Pimentel et al. (2014). Their
survey summarizes different novelty detection methods into five different categories:
probabilistic, distance based, reconstruction based, domain based and information-
theoretic based. Furthermore, they conclude that novelty detection has a similar
problem definition with one-class classification, and thus can be seen as one (Khan
and Madden 2010). A one-class classification problem refers to a learning problem
where data only exists for one class, in contrast to traditional classification tasks
where the classifier tries to distinguish between two or more classes. In one-class
classification, the learning attempts to minimize the boundary that encapsulate the
training data.

More recent research has utilized the information output from deep neural networks
to obtain a representation of uncertainty inside the network. Hendrycks and Gimpel
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(2017) created a baseline analysis of uncertainty by analysing the softmax layer of a
given sample. Since the softmax layer normalizes the output vector to a probability
distribution, the anomaly score can be seen as the difference between the most likely
class and the sum of the distribution. Hendrycks and Gimpel (2017) results show
that out-of-distribution samples tend to have a different probability distribution,
which allows the baseline algorithm to separate between in and outlier samples. Their
tests were conducted on several pre-trained networks on prominent deep learning
datasets and fields including computer vision and natural language processing.

The output layer was also used by Bendale and Boult (2016). Their approach
consisted of fitting a Weibull distribution through meta-recognition of the output
layer prior to the softmax activation. This approach allows for a likelihood estimation
of each class, to be created from the training data, that can be used to estimate an
outlier score. The computed outlier score is then compared to the most probable
class, in which the sample can be excluded if the outlier score rises above the most
probable class.

In contrast to only looking at the output layer, Liang et al. (2018) constructed a
method hat utilizes backpropagation through the network. By assuming the most
likely prediction is the correct one, and backpropagating based on this, a small
perturbation can be added to the input image. The findings show that the small
perturbation is more harmful for inlier samples, thus if the anomaly score remains
the same, it is more likely to be an outlier.

A parallel field to detection of out-of-distribution samples is the research of adversar-
ials and adversarial training. Both fields are similar in many regards, except that
out-of-distribution samples refer to natural samples that can occur, while adversarials
are custom-made samples purposely created to trick the network. Lee et al. (2018)
constructed a method that studied a measure of probability density in the feature
space of deep neural networks by utilizing a Mahalanobis distance to the density
cluster. Their findings included experiments on state-of-the-art adversarial genera-
tors, which also showed dissimilar clusters compared to the true classes. Additional
attempts have been focused on only detecting adversarial attacks, such as Zantedeschi
et al. (2017) and Shaham et al. (2018), where both extend the deep neural network
with a parallel adversarial detector with the goal of improving the robustness of the
trained neural network.





Chapter 3

Research Approach

The aim of the research is to aid testing of deep learning models, to support safety
verification of these models. This chapter describes the research approach and
connects it to safety verification, out-of-distribution detection, and research validity.

3.1 Research philosophy

Several academic and industrial research facilities are following the recent advances in
deep learning with interest. The past decade has seen image processing improvements
to surpass human performance, opening up new business opportunities. As with
most emerging technologies, the question remains how to properly test, verify and
utilize this novel field.

Even though black box testing is well-established (Nidhra and Dondeti 2012), deep
neural networks come with additional complexities that are not accounted for, such
as bias in the gathered training sets and abstractions in the form of neural network
parameters (Tommasi et al. 2017). Before deployment of systems that include deep
neural networks, it is necessary to argue for safety measures and methods to properly
evaluate uncertainties in the system implementation before it being deployed in
safety-critical applications. As the field of deep learning is rather novel, the process
of how to properly test and verify deep neural networks are yet to be defined.

In order to explain uncertainties of deep neural networks and be able to test them
for safety critical applications, one has to perceive a pragmatic view on related test
methodologies of deep neural networks and their experimental setup, as research has
been studied on low scale examples. These initial results should act as a basis for
future experiments to enhance the ability of verification of deep neural networks.

13
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Figure 3.1: Timeline of publications during the research period.

3.2 Research activities

The activities conducted in this thesis are summarized in Figure 3.1. Additional
collaboration has been conducted jointly with SMILE II, a research project running
in parallel, funded by Sweden’s innovation agency Vinnova1. The aim of the research
project overlaps with this thesis, and thus yields good cooperation for experiments
and publications.

The first publication, Paper I, aimed at established an understanding of which hurdles
have to be addressed before one can argue for safe deployment of systems including
deep neural networks. During the study, it became evident that rigorous changes
to development of deep neural networks are required, including changes to training,
testing and robustness evaluation of the model itself. The paper conducted two
semi-structured interviews to explore the concern with deep learning and supported
the claim that the research questions described in Chapter 1.2 were unresolved.

Following the initial paper, it became of interest to study how current outliers were
handled with deep neural networks, and furthermore how solid outlier detection can
be utilized in motivating integrity of a deep learning model. To further investigate, a
study was conducted with the target of doing method comparison of outlier detection
methods for deep neural networks. The methods were found through reference
snowballing of a set of previously published outlier detection methods (Landgren and
Tranheden 2018). The study found a plethora of methods of this kind, however the
majority was either ad hoc or incomparable to related methods due to a difference
in description, dataset distributions or metrics.

Since comparison of outlier detection performance on deep neural networks is new,
no common comparison metrics have been concluded. When reviewing the best
performing methods presented at the most prominent conferences, some common
denominators could be established, which laid the foundation for Paper II. The
paper delves deeper to assess how to conduct a structured evaluation of outlier
detection methods. Furthermore, the paper establishes a good setup of datasets,
metrics to report and graphs suitable for plotting a balanced comparison of methods.
One observation after the paper was published was that variations in the training

1SMILE II - Safety analysis and verification/validation of MachIne LEarning based systems -
Reference number 2017-03066
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process could affect both the models prediction performance along with the ability to
separate between inlier and outlier samples. Hence utilizing pre-training or training
augmentation has to be reported thoroughly as to not jeopardize the reproducibility
of the research. Going forward, the complete training procedure is recommended to
be reported, ideally by open sourcing of complete code for reproducibility.

Due to the difficult comparison, especially with variations in training, the decision
was made to test the most prominent methods found and compare their performance
under controlled circumstances. This was first done in Henriksson et al. (2019)
by utilizing the descriptions made in Paper II. The results were compelling, hence
yielding the opportunity to extend the conference paper into Paper III, a journal
paper currently under review. The paper investigated how alterations in the training
process and models affect the possibility of detecting out-of-distribution samples.
The experiments highlighted large variations of outlier detection rate, where models
with similar accuracy performance had varying outlier detection performance. This
highlight that the training process is of great importance, as well as small variations
in said training can have large impact on end performance.

In parallel to the third paper, a parallel project ran with the aim to investigate
if utilizing different goals in image processing alter the performance of the neural
network (Edvardsson and Trieu 2019). The project tested if fusing depth-estimation
predictions from a second neural networks would benefit the object classification
neural network. Several combinations of fusing was tested and the changes in training
performance documented. The results showed that the additional fusion neither
improved or decreased the performance.

3.3 Safety verification and validation

Safety is one of the critical properties for automated systems, where testing is one of
the measures conducted at different stages to achieve safety. A common scenario is
the description of stakeholder targets, resulting in performance specifications. These
specifications lay the foundation for the initial functional development to conduct
whether or not the product is feasible, consistent and solvable within limitations.
This comparison to specification is known as the verification part. The verification
part is also referred to as the inner loop in the verification and validation process or
the left side of the V-model. The outer loop in the process, or the right side of the
V-model refers to the validation process, and is the process of evaluating that the
product satisfies the requirements.

The common practice is an iterative approach of development and comparison of
compatibility with requirements in the validation stage. Typically, requirements are
shown as fulfilled by passing constructed tests or by introducing measures applied
during the development process. However, there are instances of requirements that
are unfeasible to quantify, or suffer from a state explosion in the functionality that
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Figure 3.2: Borg et al. (2019) suggest the addition of a safety cage method
that determines if the safety critical application needs to enter a fail-safe or safe
degradation, as documented in ISO 26262.

yield the possible solution. As per example from the computer vision field, a camera
based object detection system can be used with the requirement of detecting all
pedestrians on the road. As a pedestrian is not possible to define as a function of
image pixels, it is unfeasible to test all combinations of pixels. Additionally, due to
the input space of images is so vast, there will always remain a risk of subspace that
is not addressed by the testing.

As described in Chapter 3.3 and Figure 2.1, one risk minimization process is to
utilize hazard identification and mitigation techniques to transform unknown unsafe
states to known safe states. As the main issue described in this thesis relates to
identification of unknown unsafe states. Even if the function at hand has gone
through rigorous testing and hazard identifications, there are no guarantees that
all harmful subsets outside of the functional domain have been found. For deep
neural networks, Borg et al. (2019) suggest to extend the network with a safety cage,
another term for outlier detector, as risk reduction. The aim of the safety cage is to
reduce the amount of outlier scenarios that the system can exhibit. The suggested
method, as depicted in Figure 3.2, highlights the idea of out-of-distribution detection
as one of the measures to mitigate cases outside of the scope of the model. This kind
of measure is suggestively one out of several measures to increase the robustness and
transparency of deep neural networks.

3.4 Out-of-distribution detection

Out-of-distribution detection refers to the detection of samples that are not coherent
with the data the model was trained on. In literature, this phenomenon is often
referred to as anomaly detection or novelty detection, where the former refers to
detect stochastic outliers that occur rarely, and the latter refers to outliers that
typically follow a pattern which can be utilized in training. As any outlier can
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contribute to harmful events, these are all grouped as out-of-distribution samples or
outlier samples for short.

To start mitigating the potential risk of samples outside of the desired functional
domain, it is important to quantify how far off a given sample is compared to the
expected data. In this chapter, out-of-distribution detection is described, and how
this measure can support risk mitigation.

A common practice within the field of safety critical development is that testing
and verification of a function is not done by the original developer. This process
allows testing of the product from a different point of view, thus allowing the
testers to find errors in the functions that the developer did not consider. As deep
neural networks are inherently challenging to interpret, extending the network with
additional measures that support interpretation will improve the process of verifying
the model.

Throughout the research period, the experiments have been designed with the
assumption that for each sample that goes through a deep model, an anomaly score
can be retrieved. This score is defined as a measure of uncertainty that is received by
a functional approximation of model parameters, inputs or training data. A higher
anomaly score indicates a larger probability of the sample being of an unknown
distribution. By analyzing the score further, thresholds can be designed and iterated
on to study how risk of false activations changes, or coverage in relation to set
threshold.

Outlier detection of deep neural networks can be split into three categories, depending
on which part of the model it operates on. The rationale for the split is to enable
comparisons between methods within the category, as well as for comparing ensembles
of methods operating in parallel. The categories to group anomaly scores consist
of 1) using network internal information, i.e. methods utilizing information within
the network, such as hidden activation vectors and output vectors of a given input,
2) external network information, i.e. methods that learn features from the training
set, optimization procedure or design, and 3) adversarials, i.e. methods that allows
backpropagation through the network to utilize the gradients for a given desired
stimuli.

Outlier samples constitute a major hazard in autonomous systems (Borg et al. 2019);
this falls in line with the SOTIF standard as both a hazard identification and
mitigation strategy, as receiving an anomaly score for each sample can be used as a
rejection criterion, but also as an indication of novel cases. Thus, research on how to
properly design a formula of anomaly score needs more development. In addition, it
has to be further studied how to use the anomaly score in safety argumentation for
safety critical applications.
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Figure 3.3: Plot visualization of the receiver operating characteristics curve (left)
and the risk-coverage curve (right). The ROC-curve illustrates the separation
ability of a binary classifier (defined as a supervisor in this thesis) as the discrimi-
nation threshold is varied. The risk-coverage curve incorporates the performance
of the deep neural network to see how the coverage and risk of false classification
changes with the discrimination threshold. The red area in the risk-coverage curve
represents the outlier set added for testing purposes.

3.4.1 Comparison metrics

To evaluate the performance of the out-of-distribution detection, a plot visualization
of true positive rate as a function of false positive rate is used. This plot is referred
to as a receiver operating characteristics curve (ROC-curve) and originated as a
prediction of correct radar signals during the Second World War, but has since spread
to a plethora of fields, and has been extensively used in medical diagnostic research
(Zweig and Campbell 1993). An example of a ROC-curve can be seen to the left in
Figure 3.3.

When comparing datasets with similar characteristics, it is expected that the anomaly
score will exhibit similarities. To restrict a model from operating on outliers in this
case, the accepted anomaly threshold has to be set to a low level. This procedure will
cause the system to exclude a majority of true positive cases as well, therefore forcing
the system to operate on very few cases. To study this coverage change, the relation
between coverage and classification risk can be studied (Geifman and El-Yaniv 2017),
see Figure 3.3. By studying the risk-coverage curve, it can be determined how
restrictive the out-of-distribution detection has to be to reduce prediction risk when
distinguishing inlier from outlier data.

3.5 Research validity

As with all scientific research, we strive towards general understanding or conclusions
that are in general drawn from experiments built on hypotheses or from summarizing
existing research. However, it is important to understand that the conclusions drawn
from the experiment conducted at this initial stage are not defining generic facts
applicable to all scenarios, but rather act as a basis for new hypotheses that can be
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used as a foundation for further investigation. Hence, the research conducted in this
thesis has to be regarded as a cog in a larger machinery that aims at explaining the
decision done in deep models trained through an optimization process.

This thesis has focused on computer vision through the input domain of images,
experimenting with public datasets that are well known to the scientific community.
Moving forward, the discoveries on these generally small-scale public datasets will
be utilized for larger datasets but more importantly, data from real-life applications,
such as vehicle perception. Furthermore, the thesis has focused on the topic of
distinguishing between in- and out-of-distribution samples, for the sake of highlighting
the effect when a system encounters novel inputs previously unseen to the model.

Whether out-of-distribution detection is the only extension needed to verify remains
to be seen. While this kind of analysis provides well-rounded metrics and thereby
enables assessment of input quality, it does not cover potential stability issues in the
network. One common way to visualize stability issues are by utilizing gradients
in the network, highlighting a specific set of pixel changes that manipulates the
result from the model. In addition, an unexplored area is estimation of how good the
training set really is. As with all compute models, the deep model is only as good as
the training data, hence more research has to be conducted to establish a baseline
for what constitutes a good training dataset.

One of the major issues recently regarding research in artificial intelligence is recre-
ation of related work. With the surge of additional research in the field of computer
vision, advances in method design or datasets selections is published frequently.
While most of the related researchers have adopted open source of their code, it is a
common problem that results are not easily replicable due to slight modifications in
the setup. As the deep learning community is valuing conferences to similar extent
as journals, the amount of submissions to top conferences has tenfolded over the
past decade, without updating policies on full disclosure of experimental code setups.
To give an example from the out-of-distribution field; one paper did not disclose
that their model was of a pre-trained sort, thus when attempting to replicate their
training approach described in their paper, the results from outlier detection became
a magnitude worse while the model accuracy were similar. Due to event like this,
this thesis publishes research results, as well as all experimental code for training
and evaluation approaches.

Finally, while looking at the out-of-distribution detection results of appended and
related papers, the results may appear grim. In the experiments, there is as high
as a 10% risk of letting an unknown sample through. It is important to keep in
mind that these experiments are only for one algorithm, which in general is one
of several operating in parallel. The complete system will utilize an ensemble of
methods as well as redundancy and fallback systems to increase reliability of the
complete system at hand (Leaphart et al. 2005). With that said, risk numbers have
to be reduced further, and experiments need to be extended to look at a broader
spectrum of datasets and model types.





Chapter 4

Summary of Appended Papers

This chapter summarises the attached publications. Each paper is listed with scope,
background, methodology, key results and conclusions in a brief fashion.

4.1 Paper I

This section gives a short summary of the paper Automotive Safety and Machine
Learning: Initial Results from a Study on How to Adapt the ISO 26262 Safety
Standard.

Short description

The paper involves two semi-structured interviews regarding the effect of machine
learning in the automotive industry and its compliance with current standards. As
machine learning becomes more prominent in various solutions, the importance of
testing and verification of models becomes apparent. For safety critical applications,
such as automotive development, testing and verifying is conducted in a structured
manner by safety standard ISO 26262 (Kafka 2012). The goal of the safety standard
is to guide a product through its development cycle, including from specification
construction through design, implementation, integration, verification, validation
and release.

Chapter 6 of the safety standard: Product development at the software level consists
of 34 methods to enable identification of safety risks of the system and safety
requirements that mitigate the risk of harmful situations. In short, an item (a system
product or function) is required to go through rigorous analysis resulting in a set of
hazardous events that are given an Automotive Safety Integrity Level (ASIL) ranging
from ASIL A to ASIL D, where ASIL D represents the most severe classification.
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From the hazard list, a set of safety goals are constructed to meet the hazardous
events, followed by refining the goals to lower level safety requirements. Theses safety
requirements are then allocated to components within the item, which then can be
developed and validated for compliance with the safety requirements.

Results and conclusions

The vast majority of the 34 methods in ISO 26262 Chapter 6 exists to increase
interpretability of the unit at hand. The remaining methods refer to fault injection
and coverage metrics. While interpretability, fault injection and (neuron) coverage is
relevant for deep learning, it falls outside of ISO 26262.

During the interviews conducted in the research, it became evident that standardized
methods are required for three additional fields:

• Model training phase: Additional methods are required to ensure model
training and generalization is properly tied to the designed functional space.
For example, a neural network is a functional mapping for a given input space
to a target output space, thus the functional mapping requires more methods
that improve the understanding of the mapping itself.

• Model sensitivity: Several studies have shown that deep neural networks are
prone to errors for small variations in the input space, for example adversarial
samples. Similar to fault injection for items in ISO 26262, machine learning
needs methods that verify the robustness of the models. One way to do this is
to expose the model to known inputs with small perturbations and ensure that
the model still performs satisfactory.

• Test case design: When applying ML algorithms, it is needed to more
thoroughly design test cases. A common pitfall during development is that
training and testing are conducted on homogeneous data, which results in false
confidence of the model performance. Thus, test cases have to be diverse, and
additionally, the testing phase needs methods explaining the uncertainty of the
model as well as detecting when scenarios are outside of the function scope.

4.2 Paper II

This section gives a short summary of the paper Towards Structured Evaluation of
Deep Neural Network Supervisors.
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Short description

As stated in Paper I, model robustness and sensitivity towards samples outside of
the scope is a major concern for deep neural networks. Samples outside of the scope
of the network is considered outliers, which has been a frequent topic throughout the
years. This has not been any different for deep learning or computer vision. Several
methods attempting to find outliers have been presented in recent years with varying
capabilities or restrictions of the model.

From a safety perspective, it is reasonable to consider a supervisor; a system running
in parallel to the deep learning model analyzing the inputs and outputs of the model.
The supervisors goal would be determining when an input sample does not resemble
the training data, thus informing the rest of the system that the output is of lower
certainty. By identifying these scenarios, a vehicle could enter a safe-mode, thus
following the principles of graceful degradation, a common safety approach in safety
critical applications described in ISO 26262. From related papers researched, it
became evident that reporting results for a supervisor varies between publications.
In general, there is a common ground of certain key performance indicators, but
the vast majority of the testing setup differs in one or more settings that affect the
supervisor performance. The differences include deep neural network model setups,
training processes (either pre-trained or re-trained), training and testing datasets,
and evaluation metrics, which all increases the difficulty of comparison.

Results and conclusions

The result of the paper is a summary of how to compare supervisors by describing
the most prominent metrics. Furthermore, the paper demonstrates how these are
applicable on two use-cases that include image classification datasets and driving
scenarios respectively. The single assumption that is made on compared supervisors
is that each can provide an anomaly score, a measurement indicating how dissimilar
the sample is compared to the training set.

The paper defines in total 7 metrics that are recommended to use when comparing
supervisors. From the 7 metrics, 5 are connected to the traditional Receiver Operating
Characteristics curve, and 2 to the Risk-Coverage curve. The metrics and the
corresponding description is given below:

• AUROC: Area under the Receiver Operating Characteristics curve is an
overall metric of how well the supervisor distinguish between inlier and outlier
samples.

• AUPRC: Area under the Precision Recall curve is a metric similar to AUROC,
but takes into consideration imbalance in the dataset.
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• TPR05: True positive rate at 5% of false negative rate is intended to analyse
the slope of the of ROC-curve, where higher indicates better separation.

• P95: Precision at 95% recall. This metric highlights the precision error in the
system when 95% of the true cases are rejected.

• FNR95: False negative rate at 95% false positive rate. This metric shows
the remaining amount of outliers when the supervisor has rejected 95% of the
inliers.

• CBPL: Coverage breakpoint at performance level indicates how restrictive the
supervisor has to be to return to the same accuracy as achieved during training

• CBFAD: Coverage breakpoint at full anomaly detection metric reports at
what coverage all outlier samples have been rejected.

In addition to the metrics, the paper suggested dataset combinations for testing as
well as 4 plots supporting the metrics: The ROC-curve, PR-Curve, the histogram of
the anomaly scores of the inlier and outlier distribution, and the risk-coverage curve.

4.3 Paper III

This section gives a short summary of the paper Performance Analysis of Out-of-
Distribution Detection on Trained Neural Networks, an extension of Henriksson et al.
(2019).

Short description

With the introduction of ISO/PAS 21448 - Safety of the Intended Functionality
(SOTIF) it became apparent that functionality requires a structured way of detecting
limits and potential hazardous situations caused by insufficiencies of the intended
functionality. One common scenario for highlighting limitations of deep learning
models is misclassifications occurring in object detectors. To achieve systematic risk
reduction of functional insufficiencies, these learning systems require quantifiable
methods for risk and uncertainties in the system.

Following the SOTIF process, we identify that out-of-distribution samples constitute
a major hazard, i.e. samples that the system is not trained for and that differ
significantly from the training distribution. Detecting these samples are referred
to out-of-distribution detection. Throughout the paper series, the term supervisor
has been used to refer to the method determining if a sample belongs to an outlier
distribution or not. This paper compares 3 of these supervisors during the course of
training to see how the ability to detect outliers changes as the deep neural network
performance increases.
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Results and conclusions

To compare supervisors, the experimental setup of this paper consisted of training 4
widely adopted deep neural network architectures on the CIFAR-10 dataset for 300
epochs. Every 10th epoch 3 supervisors were tested from related research: ODIN
(Liang et al. 2018), OpenMax (Bendale and Boult 2016) and Baseline (Hendrycks
and Gimpel 2017), which were tested on 3 outlier datasets: Tiny ImageNet, SVHN
and FakeData.

In contrast to the metrics presented in Paper II, this paper refines them further.
Most notable is the replacement of ROC/PR curve metrics by a false positive rate
metric (FPR95), which quantifies how many inliers have to be rejected to catch
95% of the outliers. In addition, the coverage breakpoint at full anomaly detection
were excluded, due to all dataset combinations will contain minor overlapping, thus
rendering the metric unnecessary. Instead, a new metric Cov10 was introduced,
referring to coverage at 10% error rate, which was selected arbitrarily.

During the experiments it was found that the overall performance of supervisor,
measured by the AUROC metric, increases as the model performance increases. For
separation between similar types of images, the performance increases with model
accuracy, whereas for Gaussian noise, the results are more scattered. This scattering
illustrates the instability of the networks, and that there are combinations of samples
and supervisors creating overlapping distributions that cannot be separated.

In contrast to reaching the same accuracy as achieved during training, the supervisor
has to be more restrictive to ensure that the model returns to its original accuracy
rate. The new metric avoids this penalization by assigning a given target accuracy,
which is more in line with what requirement specifications will describe. As all
networks achieve 8% error rate or less, the accepted error rate for this comparison is
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Figure 4.1: AUROC on the y-axis and model prediction accuracy on the x-axis
for three experiments on different datasets. Each mark represents a supervisor
evaluation. Coloring and marker type represents which model and supervisor were
used, i.e an orange square refers to the model VGG16, tested with the Baseline
algorithm.
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Figure 4.2: Cov10 on the y-axis and model prediction accuracy on the x-axis
for three experiments on different datasets. Each mark represents a supervisor
evaluation. Coloring and marker type represents which model and supervisor were
used, i.e an orange square refers to the model VGG16, tested with the Baseline
algorithm.

set to 10%, thus being reachable for all trained models.

In Figure 4.2, the new metric is shown for the epochs. While a positive trend of
coverage is maintained,as the model performance increases it becomes apparent that
the variation of coverage becomes larger when it is tested on an outlier dataset that is
more diverse compared to the training set. For a given accuracy range, the coverage
can vary with as much as 20%-points for real image comparison and even larger
variations for Gaussian Noise.

One observation during the comparisons done in Figure 4.2 is that several models
achieve coverage above 50%, even for some models with less than 90% accuracy. This
indicates that the supervisor manages to distinguish between inlier samples that, if
processed, would yield a misclassification but instead are rejected.



Chapter 5

Discussions

This chapter elaborates on drawn conclusions from the appended papers, as well as
discusses additional measures for safety verification. First, testing extensions are
discussed with outlier detection being considered as one extension, followed by a
broader look at additional safety measures and research contribution. Last, potential
future research directions are presented.

5.1 Testing extensions for deep learning

Even though deep neural networks are outperforming current state-of-the-art methods
for several applications, they should still be excluded from safety critical applications,
as traceability being a major issue for deep learning. Traceability is an important
component in error handling and bug fixes, which could be improved for deep neural
networks in several areas. The areas include improving quantification of quality,
reliability and robustness, as discussed in the first appended paper. The areas that
need improvement include evaluation of quality of the training and validation dataset,
how to quantify model robustness and reliability, and how design of test cases have to
change for quality control. These topics are interconnected as quantification depends
on diversity of training and validation data. If the two datasets are intertwined,
looking at model accuracy can be misleading, and thereby lack performance on
general cases. Furthermore, how to quantify diversity or dataset coverage is still an
open issue, and will most likely be ad hoc at best, as each measure will be dependent
on application, deployment and training procedure.

A common safety strategy consist of monitoring inputs and outputs. There are
already protocols of how to handle irrational data for trivial safety critical functions,
for example through redundancy systems, fail-safes or degradation. Detecting when
either inputs or outputs are irrational for camera imagery is more cumbersome,
as pre-defined protocols do not exist due to images exhibit a vast magnitude of
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additional parameters compared to few or several singular input sensors. Even
though lack of protocols, the out-of-distribution detection method attempts this sort
of monitoring.

During our experiments conducted in Paper II and Paper III, the outlier detection
performance shows promising results, especially when operating on small-scale images,
with less than a thousand pixels. For these experiments, rejections could be made
even for samples inside of the training set where the classification network would
otherwise have predicted wrong. However, when translating the same method to
real-life large sized images, the results often resembles a tossup. This indicates that
the monitoring principle does find an exclusion criteria, however it is not powerful
enough to work for large-scale imagery. We interpret this to be due to the small
scale images being smoother, with less noise and heavy variation which often occurs
in ordinary pictures.

5.2 Using deep learning for testing extensions

Research of model robustness has resulted in several applications utilizing adversarial
samples. For example, adversarial training has shown to improve robustness against
outliers and adversarial samples, as it forces the training process to learn adversarial
features, which seldom exist in the training set. In addition, similar to adversarial
samples utilizing the gradient in the model to create erroneous samples, the technique
can also improve outlier detection, as was shown by Liang et al. 2018. Utilizing
gradients and additional parameters inside the network can be used for error detection
by studying regular behavior of the model.

Another example utilizing adversarials are Parthasarathy et al. 2020, where the
generative adversarial network structure was utilized to improve software-in-the-loop
testing by adopting a linear interpolation technique that generates stimuli similar to
a test case template. This stimuli allows a tester to write a scenario template, and
the generative adversarial network creates a plethora of realistic test scenarios for
extended test coverage.

Regarding out-of-distribution testing, as conducted in this thesis, deep learning
approaches can also be considered as supervisors. In Paper II, an autoencoder
model was used, whose sole purpose is to recreate the input data, and makes use
of the difference between input and output as anomaly score. An autoencoder
creates a functional mapping of the training set, which it utilizes to detect outliers
during runtime. An observation regarding this setup is that it can be seen as a
catch-22 situation, where one deep learning algorithm is monitoring another. This
phenomenon needs to be solved by either verification protocols of deep learning
models or argumentation when a model is safe.
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5.3 Research quality

Research quality and validity, as described in Section 3.5, is an important aspect to
refine and improve ones research. For the research conducted in this thesis, credibility
comes from replicability and quality through generalization from the results. This
thesis enables replicability as experimental code is open sourced1.

Regarding the first paper included in this thesis, Paper I, the conclusions drawn
are solid and backed by related research. However, the study only conducted two
interviews, followed by workshop discussions, which allows for opinions to be seen as
facts. The low numbers of participants in the first study can be seen as a threat to
validity, hence repeating the study now with more practical results to present and
discuss could be a possible extension to the study.

Regarding the remaining papers, Paper II and Paper III, the background research
was far rigorous. Through the reference snowballing procedure, a solid literature
base could be established, which laid the foundation for both papers, as well as
Landgren and Tranheden 2018. Each publication covered a concern found in the
literature base and extended upon each other. While the studies could have been more
rigorous if a complete systematic literature review would be conducted as described
by Kitchenham and Charters 2007, it was deemed unreliable, as the academic field
has reused words as verification and validation with a different purpose, thus yielding
thousands of unnecessary publications in the inclusion criteria.

5.4 Future Research

One critical aspect of verification is the generalization for wide set of domains. The
experiments conducted in this thesis have shown proof-of-concepts on small scale
scenarios and would benefit of being tested on real-world application data. Thus
suggestively, the supervisor technique to detect outlier samples should be tested on
safety critical applications, for example autonomous driving scenarios. Furthermore,
more supervision algorithms have to be compared to understand what parts inside
of a neural network needs to be controlled, or which parts can be used for analysis
to understand when the model operates outside of its comfort zone.

One additional topic that needs to be defined is the complete verification process
of deep learning. In this thesis, the out-of-distribution detection has been studied,
as it can operate on a hazard identification and mitigation basis. This method
needs several additional methods to operate in parallel, all described in a safety
strategy of how to achieve a robust model. However, this safety strategy is not as
straight-forward as described here. In addition to methods that describe the model,

1https://github.com/jenshenriksson/ood-comparison
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the strategy needs to cover traceability issues when the error origins from another
part of the system, perhaps a limitation in the sensors or other processing units.



Chapter 6

Conclusions

This thesis has investigated deep learning models, and what additions to testing are
necessary before these models should be considered for safety critical applications.

The initial paper studied the first research question by describing which fields require
additional testing procedures to combat the inherent challenges with deep neural
networks. The fields discussed in the paper includes: quantification of quality on
training and testing datasets, model robustness in the form of stability against small
variations of input samples, and test case design that properly covers the scope of
the deep neural network. When quantifiable measures exist for these three topics, as
well as a safety strategy for the complete system, argumentation for safe deployment
can be prepared and conducted.

The second research question has been shown through the extension of out-of-
distribution detection for various cases. It is important to understand that no
method is perfect and will reduce performance on inlier cases, as datasets are not
disjoint. Nevertheless, the concept of out-of-distribution detection as a safety measure
is valid as it can separate out large portions of outlier samples. The measure has
shown promise of the public datasets with colored images.

Furthermore, when investigating the separation ability of various trained neural
networks, additional problematic topics were found, such that the separation ability
is dependent on the training procedure. This forces the safety argumentation to
take the datasets, training procedures and model design into consideration when
validating the performance of the actual model.
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