6,044 research outputs found

    Minutiae Based Thermal Human Face Recognition using Label Connected Component Algorithm

    Full text link
    In this paper, a thermal infra red face recognition system for human identification and verification using blood perfusion data and back propagation feed forward neural network is proposed. The system consists of three steps. At the very first step face region is cropped from the colour 24-bit input images. Secondly face features are extracted from the croped region, which will be taken as the input of the back propagation feed forward neural network in the third step and classification and recognition is carried out. The proposed approaches are tested on a number of human thermal infra red face images created at our own laboratory. Experimental results reveal the higher degree performanceComment: 7 pages, Conference. arXiv admin note: substantial text overlap with arXiv:1309.1000, arXiv:1309.0999, arXiv:1309.100

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    AN IMPROVED FACE DETECTION TECHNIQUE FOR A LONG DISTANCE AND NEAR-INFRARED IMAGES

    Get PDF
    Nowadays near-infrared face recognition technology with light intensity and face recognition at a distance without the cooperation of users has gained wide attention toward these surveillance systems. Such type of environmental illumination i.e. near-infrared and face recognition at a distance in both daytime and night time can degrade the performance of surveillance systems. In the last decade, the whole biometric communities have worked on challenging tasks to develop a more accurate protection method against Near-Infrared or Long Distance database at distances of 1 meters, 60 meters, 100 meters, and 150 meters, with both daytime and nighttime images. This paper presents an improved technique of fdlibmex algorithm. The paper presents a detailed study and results of environmental illumination for face recognition. This paper also provides future directions for further research

    Multispectral Imaging For Face Recognition Over Varying Illumination

    Get PDF
    This dissertation addresses the advantage of using multispectral narrow-band images over conventional broad-band images for improved face recognition under varying illumination. To verify the effectiveness of multispectral images for improving face recognition performance, three sequential procedures are taken into action: multispectral face image acquisition, image fusion for multispectral and spectral band selection to remove information redundancy. Several efficient image fusion algorithms are proposed and conducted on spectral narrow-band face images in comparison to conventional images. Physics-based weighted fusion and illumination adjustment fusion make good use of spectral information in multispectral imaging process. The results demonstrate that fused narrow-band images outperform the conventional broad-band images under varying illuminations. In the case where multispectral images are acquired over severe changes in daylight, the fused images outperform conventional broad-band images by up to 78%. The success of fusing multispectral images lies in the fact that multispectral images can separate the illumination information from the reflectance of objects which is impossible for conventional broad-band images. To reduce the information redundancy among multispectral images and simplify the imaging system, distance-based band selection is proposed where a quantitative evaluation metric is defined to evaluate and differentiate the performance of multispectral narrow-band images. This method is proved to be exceptionally robust to parameter changes. Furthermore, complexity-guided distance-based band selection is proposed using model selection criterion for an automatic selection. The performance of selected bands outperforms the conventional images by up to 15%. From the significant performance improvement via distance-based band selection and complexity-guided distance-based band selection, we prove that specific facial information carried in certain narrow-band spectral images can enhance face recognition performance compared to broad-band images. In addition, both algorithms are proved to be independent to recognition engines. Significant performance improvement is achieved by proposed image fusion and band selection algorithms under varying illumination including outdoor daylight conditions. Our proposed imaging system and image processing algorithms lead to a new avenue of automatic face recognition system towards a better recognition performance than the conventional peer system over varying illuminations

    Evaluation of a Vein Biometric Recognition System on an Ordinary Smartphone

    Get PDF
    Nowadays, biometrics based on vein patterns as a trait is a promising technique. Vein patterns satisfy universality, distinctiveness, permanence, performance, and protection against circumvention. However, collectability and acceptability are not completely satisfied. These two properties are directly related to acquisition methods. The acquisition of vein images is usually based on the absorption of near-infrared (NIR) light by the hemoglobin inside the veins, which is higher than in the surrounding tissues. Typically, specific devices are designed to improve the quality of the vein images. However, such devices increase collectability costs and reduce acceptability. This paper focuses on using commercial smartphones with ordinary cameras as potential devices to improve collectability and acceptability. In particular, we use smartphone applications (apps), mainly employed for medical purposes, to acquire images with the smartphone camera and improve the contrast of superficial veins, as if using infrared LEDs. A recognition system has been developed that employs the free IRVeinViewer App to acquire images from wrists and dorsal hands and a feature extraction algorithm based on SIFT (scale-invariant feature transform) with adequate pre- and post-processing stages. The recognition performance has been evaluated with a database composed of 1000 vein images associated to five samples from 20 wrists and 20 dorsal hands, acquired at different times of day, from people of different ages and genders, under five different environmental conditions: day outdoor, indoor with natural light, indoor with natural light and dark homogeneous background, indoor with artificial light, and darkness. The variability of the images acquired in different sessions and under different ambient conditions has a large influence on the recognition rates, such that our results are similar to other systems from the literature that employ specific smartphones and additional light sources. Since reported quality assessment algorithms do not help to reject poorly acquired images, we have evaluated a solution at enrollment and matching that acquires several images subsequently, computes their similarity, and accepts only the samples whose similarity is greater than a threshold. This improves the recognition, and it is practical since our implemented system in Android works in real-time and the usability of the acquisition app is high.MCIN/AEI/ 10.13039/50110001103 Grant PDC2021-121589-I00Fondo Europeo de Desarrollo Regional (FEDER) and Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía Grant US-126514

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images
    • …
    corecore