51 research outputs found

    Adaptive space-time processing for digital mobile radio communication systems

    Get PDF
    The performance of digital mobile radio communication systems is primarily limited by cochannel interference and multipath fading. Antenna arrays, with optimum combining (OC), have been shown to combat multipath fading of the desired signal and are capable of reducing the power of interfering signals at the receiver through spatial filtering. With OC, the signals received by several antenna elements are weighted and combined to maximize the output signal-to-interference-plus-noise ratio (SLNR). We derive new closed-form expressions for (1) the probability density function (PDF) of the SINR at the output of the optimum combiner, (2) the average probability of bit error rate (BER) and its upper bound, and (3) the outage probability in a Rayleigh fading environment with multiple cochannel interferers. The study covers both the case when the number of antenna elements exceeds the number of interferers and vice versa. We consider independent fading at each antenna element, as well as the effect of fading correlation. The analysis is also extended to processing using maximal ratio combining (MRC). The performance of the optimum combiner is compared to that of the maximal ratio combiner and results show that OC performs significantly better than MRC. We investigate the performance of OC in a microcellular environment where the desired signal and the cochannel interference can have different statistical characteristics. The desired signal is assumed to have Rician statistics implying that a dominant multipath reflection or a line-of-sight (LOS) propagation exists within-cell transmission. Interfering signals from cochannel cells are assumed to be subject to Rayleigh fading due to the absence of LOS propagation. This is the so called Rician/Rayleigh model. We also study OC for a special case of the Rician/Rayleigh model, the Nonfading/Rayleigh model. We derive expressions for the PDF of the SJNR, the BER and the outage probability for both Rician/Rayleigh and Nonfading/Rayleigh models. Similar expressions are derived with MRC. Another area in which space-time processing may provide significant benefits is when wideband signals (such as code division multiple access (CDMA) signals) are overlaid on existing narrowband user signals. The conventional approach of rejecting narrowband interference in direct-sequence (DS) CDMA systems has been to sample the received signal at the chip interval, and to exploit the high correlation between the interference samples prior to spread spectrum demodulation. A different approach is space-time processing. We study two space-time receiver architectures, referred to as cascade and joint, respectively, and evaluate the performance of a DS-CDMA signal overlaying a narrowband signal for personal communication systems (PCS). We define aild evaluate the asymptotic efficiency of each configuration. We develop new closed-form expressions for the PDF of the SINR at the array output, the BER and its upper bound, for both cascade and joint configurations. We also analyze the performance of this system in the presence of multiple access interference (MAJ)

    Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels

    Full text link
    This paper studies the performance of antenna array processing in distributed multiple access networks without power control. The interference is represented as a Poisson point process. Desired and interfering signals are subject to both path-loss fading (with an exponent greater than 2) and to independent Rayleigh fading. Using these assumptions, we derive the exact closed form expression for the cumulative distribution function of the output signal-to-interference-plus-noise ratio when optimum combining is applied. This results in a pertinent measure of the network performance in terms of the outage probability, which in turn provides insights into the network capacity gain that could be achieved with antenna array processing. We present and discuss examples of applications, as well as some numerical results.Comment: Submitted to IEEE Trans. on Wireless Communication (Jan. 2009

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    SECOND ORDER STATISTICS OF DUAL SELECTION DIVERSITY OVER CORRELATED WEIBULL FADING CHANNELS IN THE PRESENCE OF INTERFERENCE

    Get PDF
    In this paper, second order statistics of dual selection combining (SC) system applying desired signal decision algorithm are obtained for the case when that diversity system operates in Weibull interference-limited environment. Namely, a novel closed-form expression for outage probability (OP), necessary for an analysis of average fade duration (AFD), in the term of Meijer’s G-function is derived for general case in which desired signal and cochannel interference (CCI) are exposed to fading with different severities. Depending on fading environment, semi-analytical and analytical expressions for average lever crossing rate (LCR) are obtained, too. Numerical results are presented to accomplish proposed mathematical analysis and to examine the effects of system and channel parameters on concerned quantities

    A Space-Time Correlation Model for MRC Receivers in Rayleigh Fading Channels

    Get PDF
    This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the MRC receiver are collected not only across different antennas (space), \mbox{but also} at different instants of time. This suggests the use of a retransmission, repetition or space-time coding algorithm that forces the receiver to store signals in memory at different instants of time. Eventually, these stored signals are combined after a predefined or dynamically optimized number of time-slots or retransmissions. The model includes temporal correlation features in addition to the space correlation between the signals of the different components or branches of the MRC receiver. The derivation uses a frequency domain approach (using the characteristic function of the random variables) to obtain closed-form expressions of the statistics of the post-processing signal-to-noise ratio (SNR) under the assumption of equivalent correlation in time and equivalent correlation in space. The described methodology paves the way for the reformulation of other statistical functions as a frequency-domain polynomial root analysis problem. This is opposed to the infinite series approach that is used in the conventional methodology using directly the probability density function (PDF). The results suggest that temporal diversity is a good complement to receivers with limited spatial diversity capabilities. It is also shown that this additional operation could be maximized when the temporal diversity is adaptive (i.e., activated by thresholds of SNR), thus leading to a better resource utilization.info:eu-repo/semantics/publishedVersio

    Generalized MGF of Beckmann Fading with Applications to Wireless Communications Performance Analysis

    Get PDF
    The Beckmann distribution is a general multipath fading model for the received radio signal in the presence of a large number of scatterers, which can thence be modeled as a complex Gaussian random variable where both the in-phase and quadrature components have arbitrary mean and variance. However, the complicated nature of this distribution has prevented its widespread use and relatively few analytical results have been reported for this otherwise useful fading model. In this paper, we derive a closed-form expression for the generalized moment-generating function (MGF) of the signal-to-noise ratio (SNR) of Beckmann fading, which permits to circumvent the inherent analytical complexity of this model. This is a new and useful result, as it is key for evaluating several important performance metrics of different wireless communication systems and also permits to readily compute the moments of the output SNR. Thus, we obtain simple exact expressions for the energy detection performance in Beckmann fading channels, both in terms of the receiver operating characteristic (ROC) curve and of the area under ROC curve. We also analyze the outage probability in interference limited systems affected by Beckmann fading, as well as the outage probability of secrecy capacity in wiretap Beckmann fading channels. Monte Carlo simulations have been performed to validate the derived expressions.Universidad de Málaga. Campus de Excelencia Internacional. Andalucía Tech
    corecore