779 research outputs found

    Outage Performance in Secure Cooperative NOMA

    Full text link
    Enabling cooperation in a NOMA system is a promising approach to improve its performance. In this paper, we study the cooperation in a secure NOMA system, where the legitimate users are distributed uniformly in the network and the eavesdroppers are distributed according to a homogeneous Poisson point process. We consider a cooperative NOMA scheme (two users are paired as strong and weak users) in two phases: 1) Direct transmission phase, in which the base station broadcasts a superposition of the messages, 2) Cooperation phase, in which the strong user acts as a relay to help in forwarding the messages of the weak user. We study the secrecy outage performance in two cases: (i) security of the strong user, (ii) security of both users, are guaranteed. In the first case, we derive the exact secrecy outage probability of the system for some regions of power allocation coefficients and a lower bound on the secrecy outage probability is derived for the other regions. In the second case, the strong user is a relay or a friendly jammer (as well as a relay), where an upper bound on the secrecy outage probability is derived at high signal-to-noise-ratio regimes. For both cases, the cooperation in a two-user paired NOMA system necessitate to utilize the joint distribution of the distance between two random users. Numerical results shows the superiority of the secure cooperative NOMA for a range of the cooperation power compared to secure non-cooperative NOMA systems

    Security enhancement using a novel two-slot cooperative NOMA scheme

    Get PDF
    In this letter, we propose a novel cooperative non-orthogonal multiple access (NOMA) scheme to guarantee the secure transmission of a specific user via two time slots. During the first time slot, the base station (BS) transmits the superimposed signal to the first user and the relay via NOMA. Meanwhile, the signal for the first user is also decoded at the second user from the superimposed signal due to its high transmit power. In the second time slot, the relay forwards the signal to the second user while the BS retransmits the signal for the first user as interference to disrupt the eavesdropping. Due to the fact that the second user has obtained the signal for the first user in the first slot, the interference can be eliminated at the second user. To measure the performance of the proposed cooperative NOMA scheme, the outage probability for the first user and the secrecy outage probability for the second user are analyzed. Simulation results are presented to show the effectiveness of the proposed scheme

    Non-Orthogonal Multiple Access and Artificial-Noise Aided Secure Transmission in FD Relay Networks

    Get PDF
    In this paper, we investigate an artificial-noise (AN) aided secure transmission for non-orthogonal multiple access (NOMA) full-duplex (FD) relay network. We propose a novel joint NOMA and AN-aided full-duplex relay (NOMA-ANFDR) scheme to enhance the physical security. In this scheme, the optimal power allocation between the information and the AN signal is determined such that the capacity of the two end-to-end (i.e., two source-relay-destination pairs) channel are maximized to ensure the highest quality of cooperative transmission. To fully examine the benefits of the NOMA-ANFDR scheme, we derive a new closed-form expression for the secrecy outage probability. We show that the NOMA-ANFDR scheme significantly outperforms the joint NOMA and AN in half-duplex relay (NOMA-ANHDR) scheme as well as the NOMA-HDR scheme in terms of minimum secrecy outage probability and effect secrecy throughout. This result indicates that adopting the joint of FD and AN technique at relays can effectively enhance the physical layer secrecy performance in the NOMA cooperative network.ARC Discovery Projects Grant DP150103905

    Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks

    Get PDF
    Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U-1) and User 2 (U-2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U-1 and U-2. The transmission's security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system's secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U-1 was also compared to the secrecy performance of U-2. Finally, the simulation results matched the Monte Carlo simulations well.Web of Science203art. no. 89

    Exploiting secure performance of full-duplex decode and forward in optimal relay selection networks

    Get PDF
    In the presence of an illegitimate user, we investigate the secrecy outage probability (SOP) of the optimal relay selection (ORS) networks by applying decode-and-forward (DnF) based full-duplex (FD) relaying mode. The closed-form expressions for the allocations of the end-to-end signal-to-interference-plus-noise ratio (SINR) in each wireless network are derived as well as the closed-form expression for the exact SOP of the proposed ORS system is presented under Rayleigh fading schemes. As an important achievement, SOP is also compared between orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) schemes. Our results reveal that the SOP of the suggested scheme can be considerably influenced by several parameters involved, including the number of relays, the average signal-to-noise ratio (SNR) of eavesdropper links, transmit power and the average residual self-interference (SI) enforced on the FD relays.Web of Science244767

    Secrecy outage analysis for Alamouti space-time block coded non-orthogonal multiple access

    Get PDF
    This letter proposed a novel transmission technique for physical layer security by applying the Alamouti Space-Time Block Coded Non-orthogonal Multiple Access (STBC-NOMA) scheme. The secure outage performance under both perfect successive interference cancellation (pSIC) and imperfect successive interference cancellation (ipSIC) are investigated. In particular, novel exact and asymptotic expressions of secrecy outage probability are derived. Numerical and theoretical results are presented to corroborate the derived expressions and to demonstrate the superiority of STBC-NOMA and its ability to enhance the secrecy outage performance compared to conventional NOMA

    On secure system performance over SISO, MISO and MIMO-NOMA wireless networks equipped a multiple antenna based on TAS protocol

    Get PDF
    This study examined how to improve system performance by equipping multiple antennae at a base station (BS) and all terminal users/mobile devices instead of a single antenna as in previous studies. Experimental investigations based on three NOMA down-link models involved (1) a single-input-single-output (SISO) scenario in which a single antenna was equipped at a BS and for all users, (2) a multi-input-single-output (MISO) scenario in which multiple transmitter antennae were equipped at a BS and a single receiver antenna for all users and (3) a multi-input-multi-output (MIMO) scenario in which multiple transmitter antennae were equipped at a BS and multiple receiver antenna for all users. This study investigated and compared the outage probability (OP) and system throughput assuming all users were over Rayleigh fading channels. The individual scenarios also each had an eavesdropper. Secure system performance of the individual scenarios was therefore also investigated. In order to detect data from superimposed signals, successive interference cancellation (SIC) was deployed for users, taking into account perfect, imperfect and fully imperfect SICs. The results of analysis of users in these three scenarios were obtained in an approximate closed form by using the Gaussian-Chebyshev quadrature method. However, the clearly and accurately presented results obtained using Monte Carlo simulations prove and verify that the MIMO-NOMA scenario equipped with multiple antennae significantly improved system performance.Web of Science20201art. no. 1

    Performance enhancement solutions in wireless communication networks

    Get PDF
    In this dissertation thesis, we study the new relaying protocols for different wireless network systems. We analyze and evaluate an efficiency of the transmission in terms of the outage probability over Rayleigh fading channels by mathematical analyses. The theoretical analyses are verified by performing Monte Carlo simulations. First, we study the cooperative relaying in the Two-Way Decode-and-Forward (DF) and multi-relay DF scheme for a secondary system to obtain spectrum access along with a primary system. In particular, we proposed the Two-Way DF scheme with Energy Harvesting, and the Two-Way DF Non-orthogonal Multiple Access (NOMA) scheme with digital network coding. Besides, we also investigate the wireless systems with multi-relay; the best relay selection is presented to optimize the effect of the proposed scheme. The transmission protocols of the proposed schemes EHAF (Energy Harvesting Amplify and Forward) and EHDF (Energy Harvesting Decode and Forward) are compared together in the same environment and in term of outage probability. Hence, with the obtained results, we conclude that the proposed schemes improve the performance of the wireless cooperative relaying systems, particularly their throughput. Second, we focus on investigating the NOMA technology and proposing the optimal solutions (protocols) to advance the data rate and to ensure the Quality of Service (QoS) for the users in the next generation of wireless communications. In this thesis, we propose a Two-Way DF NOMA scheme (called a TWNOMA protocol) in which an intermediate relay helps two source nodes to communicate with each other. Simulation and analysis results show that the proposed protocol TWNOMA is improving the data rate when comparing with a conventional Two-Way scheme using digital network coding (DNC) (called a TWDNC protocol), Two-Way scheme without using DNC (called a TWNDNC protocol) and Two-Way scheme in amplify-and-forward(AF) relay systems (called a TWANC protocol). Finally, we considered the combination of the NOMA and physical layer security (PLS) in the Underlay Cooperative Cognitive Network (UCCN). The best relay selection strategy is investigated, which uses the NOMA and considers the PLS to enhance the transmission efficiency and secrecy of the new generation wireless networks.V této dizertační práci je provedena studie nových přenosových protokolů pro různé bezdrátové síťové systémy. S využitím matematické analýzy jsme analyzovali a vyhodnotili efektivitu přenosu z hlediska pravděpodobnosti výpadku přes Rayleighův kanál. Teoretické analýzy jsou ověřeny provedenými simulacemi metodou Monte Carlo. Nejprve došlo ke studii kooperativního přenosu ve dvoucestném dekóduj-a-předej (Two-Way Decode-and-Forward–TWDF) a vícecestném DF schématu s větším počtem přenosových uzlů pro sekundární systém, kdy takto byl získán přístup ke spektru spolu s primárním systémem. Konkrétně jsme navrhli dvoucestné DF schéma se získáváním energie a dvoucestné DF neortogonální schéma s mnohonásobným přístupem (Non-orthogonal Multiple Access–NOMA) s digitálním síťovým kódováním. Kromě toho rovněž zkoumáme bezdrátové systémy s větším počtem přenosových uzlů, kde je přítomen výběr nejlepšího přenosového uzlu pro optimalizaci efektivnosti navrženého schématu. Přenosové protokoly navržených schémat EHAF (Energy Harvesting Amplify and Forward) a EHDF(Energy Harvesting Decode and Forward) jsou společně porovnány v identickém prostředí z pohledu pravděpodobnosti výpadku. Následně, na základě získaných výsledků, jsme dospěli k závěru, že navržená schémata vylepšují výkonnost bezdrátových kooperativních systémů, konkrétně jejich propustnost. Dále jsme se zaměřili na zkoumání NOMA technologie a navrhli optimální řešení (protokoly) pro urychlení datového přenosu a zajištění QoS v další generaci bezdrátových komunikací. V této práci jsme navrhli dvoucestné DF NOMA schéma (nazýváno jako TWNOMA protokol), ve kterém mezilehlý přenosový uzel napomáhá dvěma zdrojovým uzlům komunikovat mezi sebou. Výsledky simulace a analýzy ukazují, že navržený protokol TWNOMA vylepšuje dosaženou přenosovou rychlost v porovnání s konvenčním dvoucestným schématem používajícím DNC (TWDNC protokol), dvoucestným schématem bez použití DNC (TWNDNC protokol) a dvoucestným schématem v zesil-a-předej (amplify-and-forward) přenosových systémech (TWANC protokol). Nakonec jsme zvážili využití kombinace NOMA a zabezpečení fyzické vrstvy (Physical Layer Security–PLS) v podpůrné kooperativní kognitivní síti (Underlay Cooperative Cognitive Network–UCCN). Zde je zde zkoumán výběr nejlepšího přenosového uzlu, který užívá NOMA a bere v úvahu PLS pro efektivnější přenos a zabezpečení nové generace bezdrátových sítí.440 - Katedra telekomunikační technikyvyhově

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220
    corecore