227 research outputs found

    Contextual Out-of-Domain Utterance Handling With Counterfeit Data Augmentation

    Full text link
    Neural dialog models often lack robustness to anomalous user input and produce inappropriate responses which leads to frustrating user experience. Although there are a set of prior approaches to out-of-domain (OOD) utterance detection, they share a few restrictions: they rely on OOD data or multiple sub-domains, and their OOD detection is context-independent which leads to suboptimal performance in a dialog. The goal of this paper is to propose a novel OOD detection method that does not require OOD data by utilizing counterfeit OOD turns in the context of a dialog. For the sake of fostering further research, we also release new dialog datasets which are 3 publicly available dialog corpora augmented with OOD turns in a controllable way. Our method outperforms state-of-the-art dialog models equipped with a conventional OOD detection mechanism by a large margin in the presence of OOD utterances.Comment: ICASSP 201

    What’s the Matter? Knowledge Acquisition by Unsupervised Multi-Topic Labeling for Spoken Utterances

    Get PDF
    Systems such as Alexa, Cortana, and Siri app ear rather smart. However, they only react to predefined wordings and do not actually grasp the user\u27s intent. To overcome this limitation, a system must understand the topics the user is talking about. Therefore, we apply unsupervised multi-topic labeling to spoken utterances. Although topic labeling is a well-studied task on textual documents, its potential for spoken input is almost unexplored. Our approach for topic labeling is tailored to spoken utterances; it copes with short and ungrammatical input. The approach is two-tiered. First, we disambiguate word senses. We utilize Wikipedia as pre-labeled corpus to train a naïve-bayes classifier. Second, we build topic graphs based on DBpedia relations. We use two strategies to determine central terms in the graphs, i.e. the shared topics. One fo cuses on the dominant senses in the utterance and the other covers as many distinct senses as possible. Our approach creates multiple distinct topics per utterance and ranks results. The evaluation shows that the approach is feasible; the word sense disambiguation achieves a recall of 0.799. Concerning topic labeling, in a user study subjects assessed that in 90.9% of the cases at least one proposed topic label among the first four is a good fit. With regard to precision, the subjects judged that 77.2% of the top ranked labels are a good fit or good but somewhat too broad (Fleiss\u27 kappa κ = 0.27). We illustrate areas of application of topic labeling in the field of programming in spoken language. With topic labeling applied to the spoken input as well as ontologies that model the situational context we are able to select the most appropriate ontologies with an F1-score of 0.907

    Open-domain topic identification of out-of-domain utterances using Wikipedia

    Get PDF
    Users of spoken dialogue systems (SDS) expect high quality interactions across a wide range of diverse topics. However, the implementation of SDS capable of responding to every conceivable user utterance in an informative way is a challenging problem. Multi-domain SDS must necessarily identify and deal with out-of-domain (OOD) utterances to generate appropriate responses as users do not always know in advance what domains the SDS can handle. To address this problem, we extend the current state-of-the-art in multi-domain SDS by estimating the topic of OOD utterances using external knowledge representation from Wikipedia. Experimental results on real human-to-human dialogues showed that our approach does not degrade domain prediction performance when compared to the base model. But more significantly, our joint training achieves more accurate predictions of the nearest Wikipedia article by up to about 30% when compared to the benchmarks
    • …
    corecore