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Abstract

Users of spoken dialogue systems (SDS) expect high quality interactions across a
wide range of diverse topics. However, the implementation of SDS capable of re-
sponding to every conceivable user utterance in an informative way is a challenging
problem. Multi-domain SDS must necessarily identify and deal with out-of-domain
(OOD) utterances to generate appropriate responses as users do not always know
in advance what domains the SDS can handle. To address this problem, we extend
the current state-of-the-art in multi-domain SDS by estimating the topic of OOD
utterances using external knowledge representation from Wikipedia. Experimental
results on real human-to-human dialogues showed that our approach does not
degrade domain prediction performance when compared to the base model. But
more significantly, our joint training achieves more accurate predictions of the
nearest Wikipedia article by up to about 30% when compared to the benchmarks.

1 Introduction

Human-to-human dialogues are often composed of multiple sub-dialogues bridging a wide range
of topics. In contrast, multi-domain spoken dialogue systems (SDS) are often designed to operate
over a limited and static set of predefined topics called domains (e.g. hotel or restaurant booking)
to improve on performance [26]. The limited domain coverage in multi-domain SDS has proven to
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be a challenge for inexperienced users as they do not necessarily know in advance what domains
the SDS is able to handle efficiently. Such users may attempt to formulate utterances that cannot
be handled by the SDS. These are referred to as out-of-domain (OOD) utterances. To illustrate the
ubiquity of OOD, around 13% of utterances in the TourSG dataset used in the fourth edition of the
Dialogue State Tracking Challenge3 (DSTC4) were OOD. For this reason, graceful handling of OOD
utterances is crucial to provide robustness to SDS against unexpected user inputs while providing
helpful responses.

A number of fallback strategies have been employed to generate responses to OOD utterances. They
range from very simplistic answers such as “I do not understand. Could you please rephrase?” [38],
to more sophisticated chatbots that generate responses to hold the users’ attention [34, 9]. These
approaches however do not always provide informative answers to the users. Some efforts have been
devoted towards integrating large knowledge graphs to allow users more freedom in expressing their
intents [35]. Other efforts have focused on leveraging large amount of unstructured data to extract
answers (e.g. sentences or phrases), or to synthesise new answers [29]. In all of these scenarios,
the identification of open-domain topics can be leveraged to provide informative responses to OOD
utterances [19]. For example, access to the knowledge graph can be restricted only to areas relevant
to the open-domain topic [41]. Similarly, keywords or keyphrases can be extracted from unstructured
documents and used as answers based on the open-domain topic [12]. Finally, answers can be
synthesised from entire or sections of documents which are topically relevant [32, 24].

Now, a growing body of research explores the use of topics to enable informative responses to OOD
utterances in SDS [25, 3, 41, 18, 26, 23]. A simple way to identify such topics is to use approaches
based on word [38] or phrase [6] matching. Alternatively, probabilistic topic modelling [5] offers
another powerful, albeit more complex, strategy to identify open-domain topics [13, 19]. These
methods however do not usually take advantage of the time-dependence between utterances in the
dialogue history to improve on topic identification. Since utterances are often short (e.g. “thank you”
or “yes”), one should account for long-term dependencies between utterances to provide context.
Furthermore, topic models provide no guarantee that the topics inferred will be interpretable to
humans [8]. This is particularly true when faced with short utterances as large amounts of data is
required for these models to be accurate. Approaches based on recurrent architectures [15] have been
proposed [20] to account for the time-dependency between utterances. In particular Kim et al. [20]
used an LRCN-based approach [11, 17] to classify the domain of each utterance accounting for the
dialogue history up to that particular utterance. The Kim et al. [20] method however only classify the
domain and do not reveal new information on OOD utterances.

Against this background, we argue that a key research direction to enable informative responses to
OOD utterances in SDS is the joint identification and tracking of both the domain and topic of each
utterance to ensure robustness and accuracy in a wide range of dialogue settings [16]. In particular,
when utterances fall into domains that the SDS can handle, they are dealt with efficiently. On the
other hand, when utterances are OOD, an informative answer is still provided based on the topic
identified. As such, we extend Kim et al. [20] to support open-domain topic tracking. We fit the
model to real world human-to-human dialogues which have been manually labelled with the domain
of each utterance and automatically labelled with the most relevant topic. Our method is based on the
assumption that external encyclopedic knowledge from Wikipedia can be used to identify relevant
topics for any given utterance. This assumption is common and has been employed in a number of
prior related works [39, 37, 2, 7, 4]. Since Wikipedia is constructed and maintained collaboratively
by a large number of volunteers, it provides huge amounts of encyclopedic knowledge. This enables
the construction of a shared semantic space in which new and unseen utterances are mapped to the
closest article in terms of semantic similarity.

In more detail, we make the following contributions to the state-of-art: (i) we define a new model that
jointly learns, for the first time, both the domain and topic of each utterance, (ii) we empirically show
that our approach generates comparable performance when identifying the domains when compared
to the Kim et al. [20] model, and achieves up to about 30% improvement in accuracy against the
benchmarks when predicting the topics, (iii) we show that the exclusion of previous utterances when
training leads to suboptimal performance.

3http://www.colips.org/workshop/dstc4/
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The remainder of this paper is organised as follows. We first introduce the Kim et al. [20] model
in Section 2. We then detail our extension in Section 3. In Section 4, we present the results of our
experimental evaluation. We conclude in Section 5.

2 Preliminaries

The Kim et al. [20] model takes as input an utterance and performs a classification of its domain
accounting for the dialogue history up to that particular utterance. In more detail, the architecture is
based on a long recurrent convolutional neural network (LRCN) [11, 17, 40], that is, a composition of
a CNN [28] and an LSTM [15] (Figure 1). While CNN computes a fixed-size feature vector for each
utterance, the LSTM captures the dependency in time between the feature vectors. More precisely, let
D = {(ut,xt) : 0 ≤ t ≤ |D|} be a dataset of utterance and domain pairs. The model takes as input
an utterance ut ∈ NN at time t where N is the number of words in the utterance. Each element of ut
contains the index of a word in the vocabulary. An embedding layer [33] then map each discrete index
to a continuous embedding vector resulting in a matrix Ut ∈ RN×K where K is the embedding size.
The embedding layer is shared across timesteps such that a given word contributes changes during
training to the same embedding regardless of the timestep at which it appears. Furthermore, the word
embeddings are either initialised randomly and learned during training, or fine-tuned from pre-trained
word embeddings [33] to speed up the training [20]. The CNN used is based on the architecture
proposed by Kim et al. [21] and takes as input the utterance Ut. It performs a convolution over Ut

by sliding a set of filters of given height M and fixed width K (the same as width as the input) over
the rows of Ut . Each filter is applied to Ut to generate a feature map vt. Each feature element vt,i
of a feature map is generated from a subregion Ut,i:i+M−1 = {Ut,k : for i ≤ k ≤ i+M − 1} of
the input utterance from the i-th to the (i+M − 1)-th row such that

vt,i = f (WUt,i:i+M−1 + b)

where f an activation function (e.g. ReLU or sigmoid). The weights W ∈ RM×K and biases
b ∈ RM of each filter are shared for all i. To capture the salient feature of each feature map, a
global max-pooling is applied resulting in a scalar mt = max (vt)for each filter. Since utterances
at different time steps are likely to be of different lengths, global max-pooling is particularly suited
as it guarantees that the output of the CNN will always stay the same regardless of the input size.
The resulting scalar from the global max-pooling of each filter are then concatenated into a single
feature vector mt. In turn, the utterance feature vector mt is presented as input to an LSTM which
captures the dependency in time between the utterances via a hidden state vector ht ∈ RH and a cell
state vector ct ∈ RH . The hidden state ht of the LSTM is then presented to a dropout layer [14] to
improve on training performance and generalisation. Finally, a feedforward layer is added to compute
the domain classification scores over the D domains. These scores are then fed into a softmax layer
that produces the predictive distributions over the domains such that

xt = softmax (Wxhht + bx)

with weights Wxh ∈ RD×H and bias bx ∈ RD. The output of the model at time t is the domain
distribution xt associated with the current utterance ut. The model is trained using stochastic gradient
descent in a supervised learning fashion, using a cross-entropy loss function between the ground truth
domain x̂t (i.e. a one-hot vector) and the predicted domain distribution xt at each time-step t

Hθx = −
∑
i

xt,ilogx̂t,i (1)

where θx is the set of all weights and biases prior to xt. The benefit of this combined architecture is
its ability to be trained end-to-end. That is, the CNN learns the input features that are relevant for the
sequence labelling. However, such a model doesn’t address open-domain topic tracking as is, due to
the inherent limitation of classifying utterances into domains that have to be known a priori.

3 Joint Tracking

Our proposed model extends the one presented in the previous section to deal with settings where
utterances are assigned to both domains and topics. To do so, in addition to learning the domain of
each utterance, we also learn a continuous mapping of similarity between utterances and Wikipedia
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Figure 1: LRCN architecture combining a CNN and an RNN for utterance classification and regres-
sion. During training, the model takes as input a set of utterances and outputs a domain and a topic
embedding.

articles4 under a common semantic space. Specifically, our method consists of two main steps. In
the first step, we automatically build a training set of utterance and Wikipedia article pairs. This is
done offline prior to training our model. In the second step, we extend the structure of Kim et al. [20]
to interpolate the mapping identified in the previous step to new and unseen utterances, taking into
account the dialogue history up to that utterance.

More specifically, in the first step, we rank the most relevant Wikipedia articles to each training
utterance. To perform the ranking, we use the term frequency inverse document frequency (TF-IDF)
algorithm [31]. TF-IDF is a prevailing technique in information retrieval and suited to our setting for
its simplicity given the large amount of Wikipedia articles considered. Words in an utterance with a
high TF-IDF score imply a strong relationship with the Wikipedia article they appear in. Furthermore,
independently of the ranking, we compute a document embedding for each Wikipedia article using
the doc2vec algorithm [27]. Since doc2vec is applicable to texts of any length (although longer
semantic units yield more accurate vectors), it can readily be used to compute the embeddings of
the Wikipedia articles in our setting (hereafter referred to as topic embeddings). Let di be the topic
embedding of the i-th article in the Wikipedia dataset DW computed from the doc2vec algorithm.
The objective of doc2vec is to minimise the cross-entropy loss when predicting the missing word
wi,j for all words j in each article i ∈ DW , that is minimising

−logp (wi,j | · · · , wi,j−1, wi,j+1, · · · , di) .

The topic embeddings di are computed once, separately of our model. Now that we have both a
ranking of Wikipedia articles per utterance, and a topic embedding for each article, we can associate
a training target for each utterance in the training set. Each training target for an utterance consists of
the topic embedding of the top matching article or the average top-k topic embeddings.

In the second step, we extend the Kim et al. [20] model to account for open-domain topics by
performing a regression on the known target topic embeddings. This is achieved by using a fully
connected feedforward layer linked to the output of the LSTM

yt = Wyhht + by

with weights Wyh ∈ RK×H and bias by ∈ RK . Its role is to learn a mapping between the output of
the LSTM and the target topic embeddings. In particular, the model learns to embed each utterance
into the semantic space consisting of the topic embeddings constructed by the doc2vec algorithm
(Figure 2). In such a semantic space, a continuous similarity measure (e.g. Euclidean distance or

4en.wikipedia.org
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Figure 2: Illustration of a two-dimensional semantic space with associated convex Hull (shaded area)
of the topic embeddings.

cosine similarity) is used to compute the distance between each utterance embedding and the closest
topic embedding. When performing inference on unseen utterances, the solution lies within the
convex Hull formed by topic embeddings in the training set (Figure 2). Given the set of all topic
embeddings S = {di : for all i in |DW |}, the convex Hull is the intersection of all convex sets in S

C =

∑
j

λjdj : λj ≥ 0 for all j and
∑
j

λj = 1

 .

Therefore, the extent of the training data defines the solution space for the topic embeddings.

To train the model, we first concatenate all the dialogue sessions with each other, and then slide a
context window of length H across a fixed number of utterances. In other word, the input of the
model at each timestep t consists of the set of utterances Ut−H:t for t ∈ {1, · · · , |D|}. This prevents
the model’s complexity (i.e. its number of parameters) being dependent on the shape of the dataset,
and in particular to the maximum length of the sessions which may be large. We assess the loss using
a squared error objective function between the predicted topic embedding yt and the ground truth
topic target ŷt

SEθy = ||yt − ŷt||2 (2)

where θy is the set of all weights and biases prior to yt. The model is jointly optimised end-to-end
using a multi-objective learning function, encompassing errors not only from the topic classification,
but also errors from topic regression

argmin
θx,θy

λxHθx + λySEθy (3)

where Hθx is given by Equation 1, SEθy by Equation 2, and the weights λx, λy ∈ R.

4 Experimental Evaluation

In this section we report our performance results on both domain and topic identification.

4.1 Dataset

Our experiments use a total of two datasets.

TourSG. This corpus (released as part of the DSTC45 competition) is composed of 35 manually
transcribed dialogue sessions between tour guides and tourists in Singapore. Each of the 31,034
utterances has been annotated with one of nine domains: ATTRACTION (39.2%), TRANSPORTA-
TION (13%), OTHER (12.7%), FOOD (12.4%), ACCOMMODATION (11.3%), SHOPPING (5.7%),
ITINERARY (2.3%), CLOSING (1.7%) and OPENING (1.6%). The dataset has a vocabulary size of

5http://www.colips.org/workshop/dstc4/

5

http://www.colips.org/workshop/dstc4/


Domain Topic
Utterance Speaker Actual Predicted Actual Predicted

Hi, good morning- Guide OPENING OPENING Hi convoys Hi convoys
#uh good afternoon. Guide OPENING OPENING Afternoon (disambiguation) Phyllomacromia aureozona
This is #uh tour guide one. Guide OPENING OPENING List of events at the Jacksonville

Coliseum
List of events at the Jacksonville
Coliseum

Lynnette here. Guide OPENING OPENING Violin Concerto (Bernard Tan) Udpura
Yah. Tourist OPENING FOOD South Sea Tales (London

collection)
South Sea Tales (London
collection)

Hi Lynnette this is participant
number eleven.

Tourist OPENING OPENING Hi convoys Bukit Nanas Monorail station

And can I have your name please? Guide OPENING OPENING Please Phyllomacromia aureozona
Yah. Tourist OPENING SHOPPING South Sea Tales (London

collection)
South Sea Tales (London
collection)

Yah, this is participant number
eleven.

Tourist OPENING ITINERARY South Sea Tales (London
collection)

List of flag bearers for Singapore at
the Olym...

Okay, and how can I help you? Guide OPENING OPENING Okay (disambiguation) Okay (disambiguation)
Yah I’m planning to have #um- to
go around Asi...

Tourist ITINERARY ITINERARY South Sea Tales (London
collection)

Uruguay (disambiguation)

And what attractions can I go in
Singapore?

Tourist ATTRACTION ATTRACTION Outline of Singapore Outline of Singapore

Okay. Guide ATTRACTION ATTRACTION Okay (disambiguation) Okay (disambiguation)
#Uh which part of the year are you
planning to...

Guide ITINERARY FOOD Planning cultures European countries by electricity
consumption ...

#Um maybe this #um last week of
May.

Tourist ITINERARY ITINERARY Maybe Stranger Things (disambiguation)

This year. Tourist ITINERARY OPENING List of communes in Puerto Rico 1904 Philadelphia Phillies season
Okay. Guide ITINERARY ATTRACTION Okay (disambiguation) Okay (disambiguation)

Table 1: Predictions from the jointly trained LRCN on a randomly selected dialogue session in the
test set of the TourSG dataset.

6,035 words. The average length of an utterance is 9.25± 8.01 words, and the average length of a
session is 887± 185 utterances.

Wikipedia. The pre-processing of our training data requires the Wikipedia dataset6. The dataset is
composed of 4.5 million articles of the English Wikipedia, and has a vocabulary size of 2 million
words. No other information from the dataset was used other than the title and the raw text content of
each article.

4.2 Performance Metrics

The performance in identifying both domains and topics are assessed using standard multi-class
classification measures. In particular, to identify the topics, we assess the models at recovering the
Wikipedia articles identified by TF-IDF. That is, for each utterance in the test set we first compute
its embeddings, and then we use the Euclidean distance to identify the nearest neighbouring topic
embeddings from the Wikipedia articles. We label the learned embeddings as correctly classified if
the nearest topic embedding matches with the one identified by TF-IDF, otherwise they are labelled
as an incorrect classification.

4.3 Benchmarks

We compare performance against each component of our proposed architecture. The strength of each
benchmark lies in the potential inclusion of the dialogue history and the mechanism by which the
utterance features are calculated.

CNN. This benchmark does not take into account the dialogue history. It first computes the utterance
features, and then performs classification and/or regression using a feedforward layer followed by a
softmax layer for the classification, and a feedforward layer alone for the regression.

LSTM. This benchmark takes into account temporal dependencies between utterances. However, in-
stead of taking as input the utterance features computed from the CNN, it uses pre-trained embeddings
from the doc2vec algorithm.

Random. This benchmark assigns to each utterance a domain and a Wikipedia article at random
with equal probabilities.

6https://en.wikipedia.org/wiki/Main_Page
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Each benchmark is trained in three different configurations: domain classification only (D), topic
regression only (T), and both7 (D+T).

4.4 Experimental Setting

To ensure generalisation and avoid a dependence of our model’s parameters to the structure of the
training dataset, we concatenate the 35 dialogues sessions of the TourSG dataset into a single contigu-
ous sequence of 31,034 utterances. This enables us to use a context window of fixed size irrespective
of the number and length of each dialogue session. For this reason, our approach is applicable to
any dialogue dataset, provided a topic and a topic class are assigned to each utterance. It is worth
noting that by concatenating the TourSG dataset, the context window will intermittently overlap
with opening and closing utterances from adjacent dialogue sessions at training time. Although this
consequence represents a small fraction of the training data, it may impact prediction performance of
the opening and closing utterances at test time. One approach would be to pad each dialogue sessions
by a small but fixed amount (depending of the context window’s size) of missing values (i.e. NULL)
prior to concatenation. For example, a context window of 10 utterances would require a padding of 9
missing values between each dialogue session.

As such, we unroll the LSTM for 20 timesteps which is a reasonable range for recurrent architectures
to perform well [1]. We train the models in a supervised setting and divide our collection of
31,034 contiguous utterances into training (60%, i.e. 18,620 utterances), validation (20%, i.e. 6,207
utterances), and test sets (20%, i.e. 6,207 utterances). We further set the hidden state size of the
LSTM to 300, the embedding size to 200, and the batch size to 5 utterances. We use 64 filters of
height 1 and stride 1, with global max-pooling for the CNN. The CNN and LRCN are initialised
with pre-trained GloVe8 word embeddings for faster convergence. We use the implementation of the
doc2vec algorithm provided by the Gensim9 library to compute the pre-trained topic embeddings and
utterance embeddings for the LSTM benchmark. Furthermore, we make use of PV-DM variant of
the doc2vec algorithm as it has been shown to consistently perform better than PV-DBOW [27]. We
exclude Wikipedia articles of less than 50 words due to the limitations of doc2vec with short-length
documents [10]. We use the Gensim’s implementation of the TF-IDF algorithm to map the utterances
to the Wikipedia articles. After this mapping, we are left with 4,409 unique Wikipedia articles out of
the 4.5 million initial candidates. We use the topic embedding of the top matching Wikipedia article
(k = 1) as training target for each utterance. Finally, we set the dropout probability to 80%, and elect
the Adam optimiser [22] with a learning rate to 0.001.

4.5 Results

Table 2 compares the performance of our model and the benchmarks when trained in the three
different configurations: domain classification only, topic regression only, and both. We first observe
that all models outperform the random benchmark by up to 20%. In particular, we observe that the
challenge of predicting the correct Wikipedia article is so significant that the random benchmark
is unable to recover any articles at all, achieving an accuracy, recall and precision of zero. Such
a task is in effect equivalent to performing a multi-class classification with about four thousand
alternatives (i.e. the number of unique Wikipedia articles in the training set) compared to the more
manageable nine alternatives in the domain prediction problem. Furthermore, we note that the
combined LRCN approach clearly outperforms each of its components in isolation across all training
configurations. This confirms that the CNN is indeed learning useful utterance features, that in turn
sees their dependencies in time successfully captured by the LSTM.

Table 3 shows the performance breakdown per domain of the LRCN when jointly trained, and trained
on domains only. Table 1 depicts an example of our model’s predictions (i.e. “Predicted domain” and
“Predicted topic”) for a randomly selected dialogue session in the test set. The “Actual domain” field
refers to the annotated labels from the TourSG dataset. While “Actual topics” refers to the Wikipedia
article identified by TF-IDF.

7Excluding the random benchmark.
8https://nlp.stanford.edu/projects/glove/
9https://radimrehurek.com/gensim/

7

https://nlp.stanford.edu/projects/glove/
https://radimrehurek.com/gensim/


Domains Topics
Models A F P R A F P R

Random (D) 11.11 8.89 10.97 10.81 - - - -
CNN (D) 50.17 47.61 56.48 50.17 - - - -
LSTM (D) 35.28 34.31 34.89 35.28 - - - -
LRCN (D) 51.44 50.78 52.25 51.44 - - - -

Random (T) - - - - 0 0 0 0
CNN (T) - - - - 17.82 16.33 15.77 17.82
LSTM(T) - - - - 13.86 13.18 15.33 13.86
LRCN (T) - - - - 24.75 24.50 24.88 24.75

CNN (D+T) 51.09 48.26 57.43 51.09 18.81 17.19 16.04 18.81
LSTM(D+T) 38.51 36.52 37.16 38.51 19.80 18.38 18.05 19.80
LRCN (D+T) 50.28 49.49 50.71 50.28 30.69 30.24 31.55 30.69

Table 2: Performance comparison between our approach (i.e. LRCN (D+T)) and the benchmarks.
The letter(s) in parentheses indicate if training has been performed on domain classification only
(D), topic regression only (T), or both (D+T). The letters A, F, P, R stands for accuracy, F1-score,
precision and recall respectively. The best performing models are highlighted in bold.

Domain Model A F P R

ACC LRCN (D) 44.73 61.81 100.00 44.73
LRCN (D+T) 38.97 56.08 100.00 38.97

ATTR LRCN (D) 69.71 82.15 100.00 69.71
LRCN (D+T) 69.37 81.92 100.00 69.37

CLOSE LRCN (D) 50.52 67.12 100.00 50.52
LRCN (D+T) 47.42 64.34 100.00 47.42

FOOD LRCN (D) 46.01 63.02 100.00 46.01
LRCN (D+T) 44.60 61.69 100.00 44.60

ITI LRCN (D) 38.14 55.21 100.00 38.14
LRCN (D+T) 28.81 44.74 100.00 28.81

OPEN LRCN (D) 75.61 86.11 100.00 75.61
LRCN (D+T) 69.51 82.01 100.00 69.51

OTHER LRCN (D) 26.03 41.31 100.00 26.03
LRCN (D+T) 25.39 40.49 100.00 25.39

SHOP LRCN (D) 35.49 52.39 100.00 35.49
LRCN (D+T) 32.76 49.36 100.00 32.76

TRSP LRCN (D) 44.59 61.68 100.00 44.59
LRCN (D+T) 45.98 63.00 100.00 45.98

Table 3: Classification performance breakdown per domain of the LRCN when trained jointly (D+T),
and on domains only (D). The best performing settings are highlighted in bold.

5 Conclusion

We introduced a novel architecture that for the first time simultaneously tracks both the domain and
the topic of each utterance in a dialogue session. Our key premises were that: (i) the handling of
these two settings is essential to achieve both efficiency and accuracy in the response generated by
downstream systems, and (ii) the title and content of Wikipedia articles are a reasonable proxy for
the topic of an utterance. We showed experimentally on a real-world dataset that our approach of
jointly training the LRCN generates comparable performance when identifying the domain than the
components in isolation, but more significantly, it is up to about 30% more accurate when predicting
the nearest Wikipedia article. As a future step, it would be beneficial to add a measure of uncertainty
in the topic predictions to lessen the impact of prediction errors in downstream systems. Addressing
this issue is challenging however as the large number of parameters in our approach prevents the
direct use of Bayesian inference techniques [30, 36].
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