19,334 research outputs found

    Improving Primo Usability and Teachability with Help from the Users

    Get PDF
    In the aftermath of a consortium migration to a shared cloud-based resource management and discovery system, a small college library implemented a web usability test to uncover the kinds of difficulties students had with the new interface. Lessons learned from this study led to targeted changes, which simplified aspects of searching, but also enhanced the librarians’ ability to teach more effectively. The authors discuss the testing methods, results, and teaching opportunities, both realized and potential, which arose from implementing changes

    Research questions and approaches for computational thinking curricula design

    Get PDF
    Teaching computational thinking (CT) is argued to be necessary but also admitted to be a very challenging task. The reasons for this, are: i) no general agreement on what computational thinking is; ii) no clear idea nor evidential support on how to teach CT in an effective way. Hence, there is a need to develop a common approach and a shared understanding of the scope of computational thinking and of effective means of teaching CT. Thus, the consequent ambition is to utilize the preliminary and further research outcomes on CT for the education of the prospective teachers of secondary, further and higher/adult education curricula

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    Becoming the Expert - Interactive Multi-Class Machine Teaching

    Full text link
    Compared to machines, humans are extremely good at classifying images into categories, especially when they possess prior knowledge of the categories at hand. If this prior information is not available, supervision in the form of teaching images is required. To learn categories more quickly, people should see important and representative images first, followed by less important images later - or not at all. However, image-importance is individual-specific, i.e. a teaching image is important to a student if it changes their overall ability to discriminate between classes. Further, students keep learning, so while image-importance depends on their current knowledge, it also varies with time. In this work we propose an Interactive Machine Teaching algorithm that enables a computer to teach challenging visual concepts to a human. Our adaptive algorithm chooses, online, which labeled images from a teaching set should be shown to the student as they learn. We show that a teaching strategy that probabilistically models the student's ability and progress, based on their correct and incorrect answers, produces better 'experts'. We present results using real human participants across several varied and challenging real-world datasets.Comment: CVPR 201

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Introducing novice programmers to functions and recursion using computer games

    Get PDF
    • …
    corecore