19 research outputs found

    Data Chunking in Quasi-Synchronous DS-CDMA

    Get PDF
    DS-CDMA is a popular multiple access technique used in many mobile networks to efficiently share channel resources between users in a cell. Synchronization between users maximizes the user capacity of these systems. However, it is difficult to perfectly synchronize users in the reverse link due to the geographic diversity of mobile users in the cell. As a result, most commercial DS-CDMA networks utilize an asynchronous reverse link resulting in a reduced user capacity. A possible compromise to increase the user capacity in the reverse link is to implement a quasi-synchronous timing scheme, a timing scheme in which users are allowed to be slightly out of synchronization. This paper suggests a possible way to implement a quasi-synchronous DS-CDMA reverse link using the method of “data chunking”. The basic premise is derived by making a link between TDMA and synchronous DS-CDMA. By considering some basic TDMA limitations, a proposed “data chunked” quasi-synchronous DS-CDMA system is derived from a TDMA system. The effects of such a system are compared to those of a chip interleaved system. MATLAB simulations are performed to analyze the performance of the system in the presence of small synchronization errors between users. Implementation of guard bands is explored to further reduce errors due to imperfect synchronization between users

    Sensitivity of OFDM-CDMA systems to carrier frequency offset

    Get PDF
    6 pages;This paper presents the impact of a carrier frequency offset on the performance of 2 dimensional spreading OFDM-CDMA systems. This is measured by the degradation of the Signal to Interference plus Noise Ratio (SINR) obtained after despreading and equalization. Using some properties of random matrix and free probability theories, a new expression of the SINR is derived. It is independent of the actual value of the spreading codes while still accounting for the orthogonality between codes. This model is validated by means of Monte-Carlo simulations. . It is also exploited to compare the sensitivities of MC-CDMA and MC-DS-CDMA systems to carrier offset in a frequency selective channel. This work is carried out for zero forcing (ZF) and minimum mean square error (MMSE) equalizers

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Use of RNS Based Pseudo Noise Sequence in DS-CDMA and 3G WCDMA

    Get PDF
    Code Division Multiple Access (CDMA) based on Spread Signal (SS) has emerged as one of the most important multiple access technologies for Second Generation (2G) and Third Generation (3G) wireless communication systems by its wide applications in many important mobile cellular standards. CDMA technique relies on spreading codes to separate dierent users or channels and its properties will govern the performance of the system. So many of the problems of communication systems based on CDMA technology stem from the spreading codes/sequences, which includes two sub-categories, one being the orthogonal codes, such as Walsh Hadamard (WH) codes and Orthogonal Variable Spreading Factor (OVSF) codes, and the other being pseudo-noise or Pseudo Random (PN) sequences, such as Gold sequences, Kasami sequences, m-sequences, etc. In this thesis a PN sequence generation based on Residue Arithmetic is investigated with an eort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. This interference-limited performance is due to the fact that all the existing CDMA codes used in mobile cellular standards does not consider external interferences, multipath propagation, Doppler eect etc. So the non-ideal correlation properties of the pseudo-random CDMA codes results in MAI when used in a multi-user system. The PN codes appear random yet they are completely deterministic in nature with a small set of initial conditions. Consequently this work focuses on CDMA code design approach based on Residue Number System (RNS) which should take into account as many real operational conditions as possible and to maintain a suciently large code set size.First, the thesis reviews RNS, DS-CDMA and CDMA codes that are already implemented in various mobile cellular standards. Then the new PN Sequencegenerator design based on RNS is discussed. Comparison of the generated PN sequence with respect to other standard sequence is done in terms of number of codes and correlation properties. Monte-Carlo simulations with the generated sequence are carried out for performance analysis under multi-path environment. The system has been evaluated in AWGN, Rayleigh Fading channel and dierent Stationary Multipath Channels for dierent cross-correlation threshold. It is known that orthogonal Codes are used to multiplex more than one signal for downlink transmission over cellular networks. This downlink transmission is prone to self interference caused by the loss of orthogonality between spreading codes due to multipath propagation. This issue is investigated in detail with respect to WCDMA standards, which is very good representative for CDMA based 3G mobile cellular systems where the channelization code is OVSF code. The code assignment blocking (CAB) (If a particular code in the tree is used in a cell, then all its parent codes and child codes should not be used in the same cell to maintain orthogonality among the users) problem of OVSF codes restricts the number of available codes for a given cell. Since the 3rd generation WCDMA mobile communication systems apply the same multiple access technique, the generated sequence can also be the channelization code for downlink WCDMA system to mitigate the the same. The performance of the system is compared with Walsh Hadamard code over multipath AWGN and dierent Fading channels. This thesis work shows that RNS based PN sequence has enhanced performance to that of other CDMA codes by comparing the bit error probability in multi- user and multipath environment thus contributing a little towards the evolution of next generation CDMA technology

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thèse présente une étude d'un système complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accès multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'étude inclut la synchronisation et l'estimation du canal pour un système MC-CDMA en liaison descendante ainsi que l'implémentation sur puce FPGA d'un récepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par fréquence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accès multiple par répartition de code (CDMA), et ce dans le but d'intégrer les deux technologies. Le système MC-CDMA est conçu pour fonctionner à l'intérieur de la contrainte d'une bande de fréquence de 5 MHz pour les modèles de canaux intérieur/extérieur pédestre et véhiculaire tel que décrit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du système MC-CDMA a été simulée en utilisant le logiciel MATLAB dans le but d'obtenir des paramètres de base. Des codes orthogonaux à facteur d'étalement variable (OVSF) de longueur 8 ont été choisis comme codes d'étalement pour notre système MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquà 20.6 Mbps et 22.875 Mbps (données non codées, pleine charge de 8 utilisateurs) pour les canaux intérieur/extérieur pédestre et véhiculaire, respectivement. Une étude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a été réalisée dans le but d'évaluer rapidement et de façon précise les performances. Des techniques d'estimation de canal basées sur les décisions antérieures ont été étudiées afin d'améliorer encore plus les performances de taux d'erreur binaire du système MC-CDMA en liaison descendante. L'estimateur de canal basé sur les décisions antérieures et utilisant le critère de l'erreur quadratique minimale linéaire avec une matrice' de corrélation du canal de taille 64 x 64 a été choisi comme étant un bon compromis entre la performance et la complexité pour une implementation sur puce FPGA. Une nouvelle séquence d'apprentissage a été conçue pour le récepteur dans la configuration intérieur/extérieur pédestre dans le but d'estimer de façon grossière le temps de synchronisation et le décalage fréquentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du décalage fréquentiel de la porteuse ont été effectués dans le domaine des fréquences à l'aide de sous-porteuses pilotes. Un récepteur en liaison descendante MC-CDMA complet pour le canal intérieur /extérieur pédestre avec les synchronisations en temps et en fréquence en boucle fermée a été simulé avant de procéder à l'implémentation matérielle. Le récepteur en liaison descendante en bande de base pour le canal intérieur/extérieur pédestre a été implémenté sur un système de développement fabriqué par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le système de réception a également été réalisé. Des tests fonctionnels du récepteur ont été effectués dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilité du transmetteur, du récepteur ou des éléments dispersifs, aurait été souhaitable, mais n'a pu être réalisé étant donné les difficultés logistiques inhérentes. Les taux d'erreur binaire mesurés avec différents nombres d'usagers actifs et différentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF
    corecore