7,331 research outputs found

    Orthogonal polygon reconstruction from stabbing information

    Get PDF
    AbstractReconstruction of polygons from visibility information is known to be a difficult problem in general. In this paper, we consider a special case: reconstruction of orthogonal polygons from horizontal and vertical visibility information and show that this reconstruction can be performed in O(nlogn) time

    Reconstructing Generalized Staircase Polygons with Uniform Step Length

    Full text link
    Visibility graph reconstruction, which asks us to construct a polygon that has a given visibility graph, is a fundamental problem with unknown complexity (although visibility graph recognition is known to be in PSPACE). We show that two classes of uniform step length polygons can be reconstructed efficiently by finding and removing rectangles formed between consecutive convex boundary vertices called tabs. In particular, we give an O(n2m)O(n^2m)-time reconstruction algorithm for orthogonally convex polygons, where nn and mm are the number of vertices and edges in the visibility graph, respectively. We further show that reconstructing a monotone chain of staircases (a histogram) is fixed-parameter tractable, when parameterized on the number of tabs, and polynomially solvable in time O(n2m)O(n^2m) under reasonable alignment restrictions.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Numerical hyperinterpolation over nonstandard planar regions

    Get PDF
    We discuss an algorithm (implemented in Matlab) that computes numerically total-degree bivariate orthogonal polynomials (OPs) given an algebraic cubature formula with positive weights, and constructs the orthogonal projection (hyperinterpolation) of a function sampled at the cubature nodes. The method is applicable to nonstandard regions where OPs are not known analytically, for example convex and concave polygons, or circular sections such as sectors, lenses and lunes

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%
    • …
    corecore